
Development Documentat ion



2



 T a b l e  o f  C o n t e n t s

 1 Project Overview............................................................................................................4
 2 Team Member Responsibilities....................................................................................5
 3 Project History..............................................................................................................6
 4 Critical Decisions..........................................................................................................8
 5 Further Development...................................................................................................9

3



 1  P r o j e c t  O v e r v i e w

Project name: BEEN (Benchmarking Environment)

Project description: A generic tool for automated benchmarking in a heterogeneous distributed 
environment

Development time: Autumn 2004–winter 2006

Advisor: Tomáš Kalibera

Team members: Jakub Lehotský, David Majda, Branislav Repček, Michal Tomčányi, Antonín 
Tomeček, Jaroslav Urban

Web page: http://been.objectweb.org/

Support: been@dsrg.mff.cuni.cz

BEEN  is  a  generic  tool  for  regression  benchmarking  in  a  heterogeneous  distributed 
environment. While current tools for regression benchmarking are usually tied to a specific 
benchmark, BEEN presents a common execution environment suitable for running many kinds 
of different benchmarks (i.e. it is benchmark-independent).

For detailed description of the project and its relation to other similar tools, see Part I of the 
user documentation.

BEEN was developed in close cooperation with Distributed Systems Research Group1 at the 
Faculty of Mathematics and Physics of the Charles University in Prague. The project was also 
accepted as an ObjectWeb2 project and is hosted on ObjectWeb Forge3.

1 http://dsrg.mff.cuni.cz/
2 http://www.objectweb.org/
3 http://forge.objectweb.org/

4

http://dsrg.mff.cuni.cz/
http://forge.objectweb.org/
http://www.objectweb.org/


 2  T e a m  M e m b e r  R e s p o n s i b i l i t i e s

Jakub Lehotský:

● Results Repository

David Majda:

● Software Repository

● web interface

● RSL interpreter

● Host Runtime

● project web

● documentation

Branislav Repček:

● Host Manager

● configuration detection

● load monitoring

● documentation

Michal Tomčányi:

● Benchmark Manager

● Xampler

● core architecture

Antonín Tomeček:

● Host Runtime

● Task Manager

Jaroslav Urban:

● RUBiS

● core architecture

● documentation

5



 3  P r o j e c t  H i s t o r y

● Summer  2004 –  Michal  Tomčányi  and  Antonín  Tomeček  work  on  a  prototype 
implementation,  testing  the  ideas  of  task  execution  in  a  distributed  environment. 
Together  with  Tomáš  Kalibera  they  try  to  find  more  developers  interested  in  the 
project.

● Autumn 2004 – Jakub Lehotský, David Majda, Branislav Repček and Jaroslav Urban 
join the project team. The project is officially started. The idea is to work fast and finish 
the project in spring 2005.

First draft of the project architecture is created and the responsibilities of the team 
members are set:  Jakub will  write the Results Repository,  David will  implement the 
Software Repository and web interface to all components, Branislav will work on the 
detectors and Host Manager, Antonín will implement the Host Runtime and the Task 
Manager, Jaroslav and Michal will deal with the benchmarking core and benchmarks 
that BEEN needs to support (Xampler and RUBiS).

● Winter 2004–2005 – David writes the first version of the Software Repository – the 
only  component,  which  will  not  undergo  serious  architectural  changes  later.  First 
sketch of  the user  interface  with a  module for  the Software  Repository  and overall 
architecture  of  the  Results  Repository  are  created.  But  it  becomes  clear  that  the 
benchmarking parts of the system need serious rethinking. The spring finish date is 
abandoned.

● Spring–summer 2005 –  Michal  and Jaroslav  meet  regularly  and create  the  project 
architecture and design the plugin-based extension system, while Branislav writes first 
version of the detectors and the Host Manager. The rest of the team mostly waits for 
the benchmarking core to be in usable state.

● Autumn 2005 – the Host Manager's database engine is rewritten by Branislav. David 
rewrites the web interface to be more modular, writes parts interacting with the Host 
Manager and implements the RSL query language parser and interpreter.

● Winter 2005–2006 –  work on the benchmarking core and plugins  resulted  in first 
successful run of the Xampler comparison experiment. Jakub implements the core of 
the Results Repository and David writes a web interface for it. We make progress but 
we see that the project will require much more work than anticipated. 

● Spring 2006 – our advisor Tomáš Kalibera approaches us with an idea to write a paper 
about BEEN for a VALUETOOLS 2006 conference. All members of the team agree and 
write the article in March and April. The paper becomes useful for better definition of 
the project architecture and later when writing the project documentation, but delays 
other work on the project. Nevertheless, intensive work on the Benchmark Manager 
and benchmarking plugins continues.

We decide to finish BEEN in winter 2006,  as summer and autumn dates  seem too 
unrealistic.

● Summer 2006 – work on all parts of BEEN continues with increasing intensity. Jaroslav 
successfully executes first comparison analysis using RUBiS plugin.

The  team  decides  that  David  will  take  over  the  Host  Runtime  and  Antonín  will 
continue only with development of the Task Manager.

We  begin  to  think  about  the  documentation  and  decide  that  we  will  write  it 

6



collectively (everybody will document the part he implemented) and Branislav will be 
responsible for overall documentation structure and merging the parts together. We 
decide that  we will  use OpenOffice.org for writing the documentation,  as  we don't 
want to learn TeX or Docbook and the other good office suite – Microsoft Office – 
cannot be run on Linux, which most team members use as their primary system.

● Autumn  2006 –  David  writes  the  web  interface  for  the  rest  of  the  components, 
intensive work continues mainly on the Benchmark Manager, Host Manager, Results 
Repository and regression analysis support.

The school provides us with a VMware server for testing. Jaroslav set-ups the virtual 
machines and begins to test BEEN on them. The testing server proves as very useful 
tool.

The  responsibility  for  documentation  is  transferred  from  Branislav  to  David  and 
Jaroslav, because they have more time for it.

● Winter 2006 – we finalize the work on the  Benchmark Manager, Results Repository 
and regression analysis support. David and Jaroslav write most of the documentation.

7



 4  C r i t i c a l  D e c i s i o n s

The basics of the BEEN architecture were originally designed by our advisor, Tomáš Kalibera. 
The benchmarking core details were later designed mainly by Michal Tomčányi and Jaroslav 
Urban.

We  consider  splitting  BEEN  into  several  more-or-less  independent  components  a  good 
decision – it makes the system very modular and makes the development much easier than in a 
monolithic system since everybody works on his component and all the interaction between 
the components is routed through a few well-defined interfaces.

In  retrospect,  we  should  have  probably  merged  the  Task  Manager  and the  Host  Manager 
components, because they both manage information about hosts in the system and currently 
need to cooperate closely.

One of the decisions that influenced the development a lot was executing the tasks in separate 
virtual  machines.  Although  it  increased  the  reliability  of  the  system,  it  also  complicated 
debugging (remote debugging facilities of Java have to be used to attach a debugger to the 
external process), thus slowing down the development significantly.

When developing the web user interface,  the use of Java language was a big drag. Its static 
nature,  need  of  compilation  and  poor  capabilities  for  working  with  strings  made  the 
development quite time-consuming and painful. We should have probably used some of the 
lightweight dynamic languages built on the Java platform, such as Nice, BeanShell,  Groovy, 
JRuby or Jython.

On the other hand, the choice of the Java language and platform for development of BEEN 
components was probably the right one. The static typing helped to define interfaces and the 
compilation  into  bytecode  allowed  easy  transporting  of  the  code  over  the  network  and 
execution in heterogeneous environment.  However  it  would be interesting to compare the 
speed of the development and bug rates with a similar system built in more dynamic language 
(such as Ruby or Python).

We have  decided against  the  use  of  relational  database  for  results  storage  since  the  data 
structure  is  hierarchical  with  varying  table  widths.  This  format  is  difficult  to  store  in  the 
relational database thus we decided to store data in custom format employing facilities already 
provided by the file system and NetCDF libraries. This provided for better performance and 
higher flexibility of the Results Repository and easier data access for the statistical processing 
by the R scripting language.

We have used automatic unit tests for several components. The decision proved as a good one, 
as it significantly decreased number of bugs in the tested components. We have also used the 
Selenium Core4 testing suite for functional testing of the web interface – traditionally a difficult 
area to test.  The functional tests proved even more useful than the unit tests,  as they also 
tested the interaction between BEEN components.

From the management point of view, there was one mistake: We did not know what features 
will  be  really  important  for  the  end  user  and  which  will  not.  We  didn't  have  previous 
experience  with benchmarking,  and the  use  cases  of  BEEN are quite  unconventional.  Our 
knowledge  about  benchmarking  improved  over  time,  but  the  overall  uncertainty  lead  to 
implementation  of  several  features  which  proved  unnecessary,  and  also  complicated 
prioritization of the development tasks. In general, implementation of BEEN was much more 
difficult and time consuming than anticipated.

4 http://www.openqa.org/selenium-core/

8

http://www.openqa.org/selenium-core/


 5  F u r t h e r  D e v e l o p m e n t

BEEN was developed in close cooperation with Distributed Systems Research Group5 at the 
Faculty of Mathematics and Physics of the Charles University in Prague. The research group is 
interested in using the project for purposes of benchmarking the Mono implementation of the 
.NET framework and possibly in other projects.

We have also received indications that several companies are interested in the project, and one 
seriously considers using BEEN for testing of its developed software. Currently, we do not want 
to disclose the names of the companies, to protect their interests.

The interest of several parties in BEEN will probably lead in its further development. Most 
members of the current BEEN team are not interested in continuing its development, however 
BEEN is an open source product (licensed under the terms of the LGPL license), so it can be 
easily extended and further developed by anyone. Project team members are committed to 
support further developers with their advice and knowledge about the project.

BEEN is already registered as a project at the ObjectWeb consortium6. We anticipate that the 
development will continue there, under the lead of Distributed Systems Research Group.

5 http://dsrg.mff.cuni.cz/
6 http://www.objectweb.org/

9

http://dsrg.mff.cuni.cz/
http://www.objectweb.org/

	 1 Project Overview
	 2 Team Member Responsibilities
	 3 Project History
	 4 Critical Decisions
	 5 Further Development

