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The log structured file system described in this document is free software; you can
redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This file system is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this file
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Chapter 1

Introduction

1.1 Log Structured File System

Just about any basic course on operating systems that covers file systems at least men-
tions some kind of a log structured file system as an example of a less traditional disk
layout. Log structured file systems have proved to perform very well under metadata
intensive workloads and offer features unknown to ordinary file systems. On the other
hand, even though Linux boasts support of a wide range of file storage systems, none
of them has been log structured until this day. This document describes a brand new
implementation of a log structured file system for Linux 2.6.17 (LFS).

Log structured file systems have been around for a long time. They have been
proposed in 1991 by Mendel Rosenblum and John K. Ousterhout [1] who described
them in the following way:

“A log-structured file system writes all modifications to disk sequentially
in a log-like structure, thereby speeding up both file writing and crash
recovery. The log is the only structure on disk; it contains indexing infor-
mation so that files can be read back from the log efficiently.”

The proposed scheme also included division of the underlying device into segments
and garbage collecting truncated and outdated data together with an optimal garbage
collecting strategy based on a cost-benefit analysis.

In 1993, Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin
picked up on this work and implemented a log structured file system that was fully
integrated into a contemporary production UNIX operating system [2] and managed
to overcome many of the shortcomings of the first prototype implementation. We have
based our on-disk data structures on their work even though we have amended them
to better suit the current Linux environment.

Since then there exist implementations of log structured file systems for old BSD
UNIXes. Google reveals several attempts to implement a log structured file system for
Linux but none of them has ever been finished. Only one of them, for example, has a
working garbage collector, the rest of them are often unable to reclaim free space from
outdated and deleted data. The one that has a garbage collector does not support
mmap, often trashes cache for no good reason and has other serious shortcomings.

Log structured file systems were proposed because they perform very well under
certain workloads. Moreover, fast crash recovery is a logical extension of such a file
system and they make it possible to implement so called snapshots. By a snapshot
we mean a read-only file system that represents the state of the original file system at
a given moment. The original file system can then be modified but the snapshot still
has the same contents. This is useful particularly for backing up consistent data while
the file system itself is mounted and stored information is being changed.

Even though there is still room for improvement, we have managed to put together
a working and competitive file system that:

• takes full advantage of Linux 2.6 page cache,
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6 CHAPTER 1. INTRODUCTION

• has working garbage collector,

• uses sophisticated data structures for large directories that considerably speed
up directory operations,

• implements snapshots as described above,

• is capable to recover from a system crash.

Our file system still has a few shortcomings though. Because of the time frame
allocated to us and hardware that we had at our disposal, we were only able to thor-
oughly test a limited number of configurations. For example, even though there is no
reason why the file system should not work on an architecture different from i386 and
extra care has been taken to provide for big endian architectures, no tests on other
architectures were performed simply because we did not have access to the hardware.
Furthermore, the number of configurations that could potentially be achieved by tun-
ing the size of blocks and segments would require lots of months of thorough testing
that we did not have. Therefore, these parameters are fixed at the moment even
though internally the system is ready for a wide range of values.

1.2 About This manual

Following this introductory text, the second chapter deals with setting up the file
system. It covers necessary requirements, patching the kernel, compiling the source
code and installing the file system onto your computer. The third chapter describes
the file system from the user point of view. It covers the utilities that come along
with it and explains how you can obtain information about mounted file systems. The
fourth chapter describes LFS on-disk structures, the fifth one explains the internals of
the kernel module that implements the file system and the sixth presents an overview
of the implementation of snapshots. The seventh chapter deals with implementation of
user space utilities. Finally, we have included our manual pages and the GNU licence
terms and conditions that apply to this project.

1.2.1 Conventions used throughout this document

There are not many typographical conventions in this document, nevertheless it is
probably necessary to say that especially important parts of the text are printed
in bold, technical terms are highlighted in an italic font, identifiers and other text
appearing in the source code are typeset using a monospace font, just like the input
and output of various utilities displayed in a terminal.



Chapter 2

Installation

2.1 System Requirements

• Vanilla kernel 2.6.17.8 with applied lfs-patch as described in next section.

– Large block devices (LBD) are supported

– Large files are supported

• Recent version of glibc library is required (e.g., 2.3.6 from Debian Sarge or cur-
rent 2.4). This is not important for compiling file-system but for using it. Some
older libraries (e.g., 2.0.6 from 1997) contained implementation of readdir()

that can return some directory entries multiple times in case of large direc-
tories. This behavior was also observed using ext3 file-system with indexed
directories.

2.2 Installation

LFS has been developed and tested with vanilla kernel 2.6.17.

1. Apply path to configured kernel

$ cd /usr/src/linux-2.6.17.8/

$ patch -p1 <<path_to_lfs_instaltion/patches/lfs-2.6.17.8-1.patch

For your connvenience, a patched kernel is also included on the CD. Compile
your kernel as usually.

2. Change to the root directory of LFS distribution. Type:

$ make

3. Install LFS by typing

$ make install

This will copy the garbage collector to /sbin/lfs-gc, mkfs.lfs to /sbin/mkfs.lfs,
fsck.lfs to /sbin/fsck.lfs, dump.lfs to /sbin/dump.lfs and liblfs.so to
/lib/liblfs.so. It will also install the kernel module to the appropriate direc-
tory.

4. Optionally, copy man-pages from doc/man to your distribution’s man path1.

5. Load lfs module by:

$ modprobe lfs

lfs is now installed and ready for use. You can proceed to Quick Start in next
chapter

1/usr/share/man/man8 on Debian
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Chapter 3

User’s Guide

3.1 Quick Start

lfs is a standard Linux file-system. It is mounted as any other file-system and standard
utilities like mkfs for managing it are provided. The following table presents a list of all
support programs and their counterparts for the ext2 file-system for the convenience.

program ext2 description

mkfs.lfs mke2fs Creates an empty file-system on a disk
partition and fills it with an empty root
directory.

lfs-gc — Garbage-collector that frees unused
space. It is started automatically in
the mount time.

3.1.1 Step-by-step

• First of all you need to create a partition on a disk. You can use the fdisk

program. The partition should be at least 100MB large because smaller file-
systems are not supported1.

• After partitioning you have to create an empty file-system. For this purpose you
have to use the mkfs.lfs program. In this example we use the default settings.
Once a new partition has been created on /dev/hdb1 mkfs.lfs output looks like
the following:

# mkfs.lfs /dev/hdb1

mkfs.lfs: version = 1.0

mkfs.lfs: device = /dev/hdb1

mkfs.lfs: volume name = LFS

mkfs.lfs: device size = 987966 kB (0.94 GB)

mkfs.lfs: block size = 4 kB

mkfs.lfs: segment size = 1024 kB = 256 blocks

mkfs.lfs: reserved space = 1024 kB = 256 blocks (1 segments)

writing data.....

................................

ifile has 15472 bytes

addresses per indirect block : 512

writing 0. super block at 0x0000000001000000 (checksum is

0xb29a8d3b) ... OK

writing 1. super block at 0x000000000fc00000 (checksum is

0xb29a8d3b) ... OK

1Working with fdisk is out of scope of this document. See man fdisk for full usage
documentation
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10 CHAPTER 3. USER’S GUIDE

writing 2. super block at 0x000000001e800000 (checksum is

0xb29a8d3b) ... OK

writing 3. super block at 0x000000002d400000 (checksum is

0xb29a8d3b) ... OK

syncing ...

LFS successfully created on /dev/hdb1

• Finally, the file-system needs to be mounted (using mount) to some directory in
your file-system. If you want to attach lfs to /mnt/lfs directory, the following
command does the job :

# mount -t lfs /dev/hdb1 /mnt/lfs

After successfully completing all steps, lfs can be used.

3.1.2 Snapshot

Snapshot is a special ability of lfs that has no counterpart in ext2-like file-systems.
Sometime you want to make copy of frequently updated data or simply just to read
them. The problem is that some data are changing to often and your copy would
not be consistent. This problem is often encountered when one makes a backup copy.
Solution is to stop all writing, so data are not change, while the copy is being made.
Of course this solution has its disadvantages.

Solution provided by lfs is simple. Just mount file-system once more in a special
snapshot-mode. Snapshot contains state of the whole file-system in the time of
mount. It will never change even if the underlying lfs file-system does.

To take a snapshot you have to know an id of the mounted system. Because one
file-system can be mounted to multiple places with different options we do not use a
path (mount-point) as the identifier. Rather each lfs file-system has its own special
id that can be used to reference it.

If you do not provide an id when mounting the file-system, an unused id is gen-
erated. You can check the /sys/filesystems/lfs/ directory for all lfs file-systems
in use. Each mounted lfs has its own subdirectory, which name is equal to its id

Files in this directory export various runtime data – mainly for debugging purposes.
Generated ids have the format lfs%d. Identifier lfs0 is assigned to the first mounted
lfs file-system.

Once you know the id of a file-system you can mount a snapshot, e.g. to /mnt/snap,
using command:

#mount -t lfs-snap lfs0 /mnt/snap

To close snapshot just umount the snapshot file-system by:

#umount /mnt/snap

3.2 Kernel & Patches

lfs is developed for a patched 2.6.17.8 kernel. Patch is included in the distribution
archive. Patch contains:

• Export of symbols of few kernel functions.

• Patch by David Howells <dhowels@redhat.com> which allows file-systems to
register callback for handling page-faults. lfs can track when mmaped data
are dirtied2

3.3 Managing lfs

All programs described in this section have their manual pages that are included in
lfs distribution archive. You can read them in the Appendix A.

2Why lfs must know about dirtied pages is described in Section 5.1.3
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3.3.1 Creating a file-system

Prior to mounting a file-system, it must be created on a device using the mkfs.lfs

utility. Program first checks the size of the supplied device, it checks whether the device
is large enough (the lower limit is 100MB) and prints out the file-system parameters
(device size, segment size, block size, etc.)

mkfs.lfs cleans all segment summaries before any other data are written to the
disk. This can take a while, depending on the device size. Program signals that the
process wasn’t finished yet by printing dots.

In the next stage, .ifile and the super blocks are written. After this, all the data
must be written back from caches to the device. Since cleaning segment summaries
means writing a lot of bytes for a large disks, flushing cashes takes some time as well.

Finally, message LFS successfully created on <device> signals that the file-system
was successfully created and is ready to be used.

3.3.2 Mounting a file-system

File-system is mounted using standard UNIX mount utility. If the lfs module is not
loaded you must add a type parameter -t lfs and module will be loaded automati-
cally3. If module is already loaded you need not specify its type. In that case kernel
detects the type itself. lfs supports standard mount options (e.g., ro, rw, noatime
...) together with lfs specific ones:

• id=<lfs-id> sets id of mounted file-system. This can later be used for its
identification. Without this option identifier is generated automatically (lfs0,
lfs1 ...).

• gc=<lfs-gc> specifies program which will be run as a garbage collector.

If you do not specify noatime option it will be added. lfs cannot be mounted
without this option.

3.3.3 Mounting a snapshot

Snapshot is mounted as a special read-only file-system. Its type is lfs-snap. Original
file-system is synced during mounting the snapshot. Snapshot represents the lfs state
after that sync. Snapshot file-system doesn’t support any additional options.

The device used to mount a snapshot is always an id of the original file-system.
Once a snapshot is mounted all included data is still remaining on the disk. This

means that if you delete a file from the live system, the space it was using is not freed
until the snapshot is umounted. When you edit the file created before a snapshot
was taken, a new version of this file will be stored on the disk along with the old
one, consuming additional space. Notice that if a snapshot is mounted and the live
file-system is being concurrently modified, all new data takes extra space even if old
data is overwritten. On the other hand appending extra data to a file will not double
the whole size of the file. Snapshot acts in the copy-on-write fashion.

After umount all obsolete (deleted or modified) data is freed and free space on disk
increases.

3.3.4 Debugging a file-system

If you want to see on-disk data structures you can use dump.fs program. It shows
super-blocks, inodes, segments, etc. To fully understand its output you read Chapter 4
On-disk Structures. dump.lfs has many options described in its manual page (see
Appendix A). Following example shows how a super-block can be displayed :

$ dump.lfs /dev/hdb1 sb

fs.sb.@address = 0x01000000

fs.sb.s_segment_count = 101

3Autoloading must be enabled in kernel.



12 CHAPTER 3. USER’S GUIDE

fs.sb.s_log_blocks_per_seg = 8 (256)

fs.sb.s_reserved_segment = 1

fs.sb.s_free_blocks_count = 25600

fs.sb.s_free_seg_count = 93

fs.sb.s_first_free_inode = 3

fs.sb.s_used_inodes = 3

fs.sb.s_log_block_size = 12 (4 KiB (4096 bytes))

fs.sb.s_ifile_addr = 0x00406000

fs.sb.s_next_block = 0x408

fs.sb.s_segment_counter = 5

fs.sb.s_mtime = Sun Aug 20 18:26:56 2006

fs.sb.s_wtime = Sun Aug 20 18:29:50 2006

fs.sb.s_mnt_count = 0

fs.sb.s_max_mnt_count = 0

fs.sb.s_magic = 0x1234

fs.sb.s_state = 0x00000000

fs.sb.s_errors = 0x00000000

fs.sb.s_minor_rev_level = 0

fs.sb.s_lastcheck = Sun Aug 20 18:26:56 2006

fs.sb.s_checkinterval = 0

fs.sb.s_rev_level = 0

fs.sb.s_feature_compat = 0x00000000

fs.sb.s_feature_incompat = 0x00000000

fs.sb.s_feature_ro_compat = 0x00000000

fs.sb.s_volume_name = "LFS"

fs.sb.s_checksum = 0x02d4e8f7

3.4 Obtaining runtime information

Mounted lfs file system provide a a lot of of information about its internal state,
which can be read through sysfs. There is a subdirectory for each mounted instance
in /sys/filesystems/lfs. A comprehensive overview of all the files is shown in ta-
ble 3.1. Please note that values prefixed with stat are not present if the lfs module
is compiled without statistical data.

3.5 Limitations

• O DIRECT — opening a file in the direct write mode is disabled. Direct operations
does not comply with the lfs nature.

• noatime — this flag is forced when mounting lfs because changing access time
would result in frequent writes and a great performance loss.

• x86 — file-system was developed and tested only on Intel 32bit platform.
Even though lfs was designed as architecture independent, it was never tested
elsewher so its functionality cannot be assured.
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File Description
seg count file-system size in segments
seg size segment size in blocks
block size block size in bytes
seg counter actual segment counter value
free space max maximal free space
free space actual free space
free space delay amount of bytes, which will be added to free space

after umounting the snapshot
free segs actual number of free segments
free segs max maximal number of free segments
inodes alloc allocated inodes in the ifile
inodes used used inodes
stat comm segs number of successfully written segments since the

last mount
stat comm syncs number of successfully written sync points since the

last mount
stat wq len length of the garbage collector work queue
stat wq req number of request messages in the gc queue
stat wq inf number of info messages in the gc queue
stat gq len length of the garbage queue
stat gq mapping number of mappings in the garbage queue
stat gq inode number of inodes in the garbage queue
stat gc send number of info messages send to gc
stat gc recv number of gc requests received

Table 3.1: Information exported via sysfs
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Chapter 4

On-disc structures

This chapter describes the on-disk structures we used in our implementation of a log-
structured file system. Please note that we assume the reader is familiar with both
traditional UNIX file system layout (that is explained for example in [3]) and general
concepts of log structured filesystems as they are described in [1] and [2]. Please read
through at least these two papers if you have not done so already. We have based
our work particularly on the latter and won’t go into much detail in cases when our
implementation is almost the same.

All on-disk structures described in this section are defined in file include/lfs fs.h.
Please refer to it for exact definitions, comments and details.

4.1 Data types

Before we proceed to various structures present on the device, it essential to spend
a number paragraphs with a few basic but fundamental design decisions and basic
types. First and foremost, all multi-byte integers on the disk are stored in little-
endian format. It is therefore necessary to use appropriate conversions whenever
accessing any such integer that ever reaches the disk. Secondly, all structures we store
on the disk are packed so that the compiler does not include any padding and thus
they have the same binary representation on all platforms. This also means that the
programmer is responsible for word alignment of individual items of these structures.

The current source code often requires that size of a particular structure must be
a power of two. In this document we try to explicitly warn about these requirements
whenever describing such a structure but it is necessary to double check before chang-
ing any on-disk structure whatsoever. Sometimes there are other requirements, for
example two structures found in the ifile must have the same size. In other words,
changing the on-disk structures is a delicate task that must be done thoughtfully.

Finally, this is an overview of the basic types specific to LFS that are used in
on-disk structures:

lfs addr t is an address on the disk from the beginning of the device in blocks (thus
it must be multiplied by the block size in order to get the address in bytes). Not
surprisingly, it is used to store addresses of blocks.

lfs inode addr t is an address on the disk from the beginning of the device in bytes.
However, as the name suggests, it is only used to specify locations of inodes on
the disk.

lfs finfo block t is a logical index of a block within its file or indirect block ordering
(see section 4.3) in blocks. It is used in finfo structures to identify blocks within
a segment.

All types described above are internally 64-bit unsigned integers and thus impose no
practical limit on the device or file size.

15
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4.2 Characteristics common with traditional de-
signs

We assume the reader is familiar with concepts of traditional file systems in UNIX
environments (which are described for example in [3]) and therefore we will not describe
those that LFS uses as well in much detail. However, let us at least briefly mention
the most important ones.

Most file systems divide the underlying device into smallest addressable and indi-
visible units called blocks and so do we. Even though some of our metadata can share
blocks (for example inodes can), files in particular are always internally accessed with
block granularity. At this stage, our blocks are 4096 bytes long (see limitations on
page 6).

Most importantly, we also use the traditional indexing structure of UNIX file
systems, namely the inode and indirect blocks. However, indirect blocks are numbered
as described in the next section. LFS also has superblocks that represent data global
to the file system and are the only structures that are not written in a log-like manner.
The last common concept shared with traditional file systems is that directories are
represented with files with a given internal format and special access methods.

Figure 4.1: Block indices.

4.3 Block indices

Both indirect and data blocks are assigned an index that uniquely identifies them
within an inode. The index of a data block is simply its offset in bytes divided by
the block size. Indirect blocks are numbered in a pre-order depth first search manner.
The figure 4.1 describes exactly how this is done.
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4.4 Segments

All log structured file systems we know of statically partition the disk into segments
of the same and fixed size. [4] discusses the impact of various segment sizes and
recommends 4 ∗ AccessT ime ∗ TrasferRate of the disk. Given today’s disks, the
recommended value usually varies in between one and two megabytes. In order to
diminish the cleaning overhead and to limit the number of possible configurations (see
limitations on page 6), the current version of LFS uses segments one megabyte long.

Figure 4.2: Disk structure overview

There are three main types of segments (see figure 4.2):

Reserved segment is a segment in the beginning of the device that is never touched
by the file system. Usually there is one such segment on the device that can be
used for whatever purpose the user chooses.

Superblock segment is a segment that contains a superblock. There are four su-
perblocks on each LFS device and thus four superblock segments. Superblock
segments do not contain any other data apart from the superblock.

Data segment is an ordinary segment that contains user data and file system meta-
data. We will deal with these segments in more detail in the section 4.7 on
page 19.

4.5 Ifile

Every log structured file system needs a means of tracking state of individual segments
and inodes. Whereas Sprite-LFS [1] used a special kernel table to store this informa-
tion, BSD-LFS [2] moved both to an immutable file called ifile and we have adopted
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the same approach. Ifile in our implementation of LFS consists of two parts and its
structure is depicted in the figure 4.3.

Segment summary 0

Segment summary 1

Segment summary n

...

Inode table entry 1

Inode table entry 2

...

Inode table entry m

Used inodes

Used blocks

Flags

Segment counter

Version

Inode address

Next free inode

Figure 4.3: Ifile: The ifile consists of segment usage table and inode table. The
size of the former does not change whereas the latter grows as the number of
inodes on the file system increases.

4.5.1 Segment usage table

The first part of the ifile is called segment usage table. This table is created by
mkfs and has a fixed size for the entire life of a particular file system instance. It
contains an entry for each segment with information about how much live data and
inodes the segment contains, what is its current logical sequential number or segment
counter (see section 4.7) and flags to distinguish in between various types and states
of segments. This part of ifile is especially important for the garbage collecting and
segment allocating subsystems described by sections. . .

4.5.2 Inode table

The second part of the ifile is an inode table. This table grows as inodes are created
in the file system. Every inode is described by an item in this table which enables us
to:

• locate the inode on the device,

• check whether a particular inode on the disk is still alive (see section 4.6) and

• quickly delete and create new inodes.

When an inode is deleted (its nlink and reference counter both reach zero), the address
in the corresponding inode table entry is set to zero and the item is prepended to a
linked list of free items. When a new inode is requested, an item is taken out of the
linked list and used. If there is no unused item, a new one is created at the end of
the ifile and initialized. In both cases, the version of this inode number is incremented
(see section 4.6 for explanation of versions). The inode table never shrinks but so far
no one has considered this a problem.

4.5.3 Size constraints

Obviously, since it is likely that the number of items in both segment usage table and
inode table will be very large, it is important to keep their items small. Currently,
both structures are 16 bytes long. The current code depends on the fact that
both structures have the same size which is a power of two. This requirement
greatly reduces complexity and must be observed when modifying ifile internals.
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4.5.4 Working with ifile

When accessing various parts of the ifile from kernel, the programmer should use the
appropriate routines in ifile.c. A very brief summary of the four most important are
given in table 4.1. Please refer to the source code and relevant comments for more
information. As a side note, a new inode is created by lfs ifile new ino() and they
are deleted by lfs ifile free ino().

Function Description
lfs ifile get segusage() obtains a pointer to an entry in the segment

usage table. Gets, maps and locks the relevant
page.

lfs ifile get inode() fetches a pointer to an entry in the inode table.
Gets, maps and locks the relevant page.

lfs ifile put page() unlocks, unmaps and puts the page returned
by the two functions above. Has to be called
when you are done with any of the items.

Table 4.1: Ifile access functions

4.5.5 Synchronization

Of course, it is essential that concurrent access to all parts of the ifile is avoided. This
is done using page locks. Each item is simply protected by the page lock of the page
it resides in. Functions listed in table 4.1 lock pages properly for you.

4.6 Live and dead entities and inode versions

Since log structured file systems store all data in a single log, the data is never written
to the same position from which it was read or which it was written to before. The
same stands also for inodes, indirect blocks and even for the ifile (see section 4.5).
Naturally, only the chronologically last copy of such data contains the currently valid
version. Such inodes and blocks will be referred to as live. On the other hand, all
other copies are outdated at any given moment. Such copies are referred to as dead
and are subject to garbage collection.

In order to collect garbage safely, it is important to be able to determine whether
a particular block or inode is alive or not. Strictly speaking, an inode on the disk is
alive if and only if the corresponding item of the inode table points to it. Similarly
a block is alive if and only if it is being pointed to by either the inode or an indirect
block. In order to speed the process of finding out the live status of an entity, log
structured file systems introduce so called inode versions. An inode version is a
number that is associated with an inode number and that is incremented every time
the inode is truncated to zero or the inode number is recycled and assigned to a newly
created inode. When it is known that a block or an inode structure on the disk have
an inode version different from the current one, they can be safely considered dead
(see figure 4.4). Versions of inodes are used when collecting data and indirect blocks in
the same way, the benefit of using them can actually be much bigger because loading
the inode or even a few indirect blocks can be avoided.

4.7 Data segment layout

Log structured file systems need to finish a segment when they finish their part of the
sync syscall. Both Sprite-LFS [1] and BSD-LFS [2] use so called partial segments
in order not to waste space by leaving the rest of the segment unused. Our imple-
mentation closes partial segments at a few more occasions (fsync, pre-sync, flushing
excessive amounts of journals and so on) in a very similar way.
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Figure 4.4: Inode versions. a) There is only one inode of a given number present
on the disk, it has version six, is alive and pointed to by the inode table. b)
An inode has changed and been written to the disk. A new copy with the same
version is created and the corresponding pointer in the inode table is redirected
to point at it. The previous inode is dead but to find this out, we must check
where the live inode is. c) The inode has been deleted. Both inodes on the
disk are dead because the inode table entry does not point anywhere. d) The
inode number and the corresponding inode table entry have been recycled. Its
version is incremented and the new inode has been written to the disk. The
previous inodes are dead. This can be determined from their version because it
is different from the version recorded in the inode table.

Throughout this text, unless we explicitly specify we refer to a partial segment, we
mean the whole, physical, one megabyte long one. For example, the inode usage table
in ifile has exactly one item for each physical segment, even if it contains multiple
partial segments.

Every partial segment has a special structure called segment summary at the
end. We will discuss particularities of partial segments and their summaries in the
next chapter, at this point we only need to say that the summary contains the length
of the partial segment. Moreover, the physical segment is always fully covered by
partial segments, even if the last one is entirely empty. Such empty partial segment is
called a phantom segment and is required to locate the previous partial segments.
Thus, there is always a valid segment summary at the end of every physical segment
(if it has ever been written to). Because every partial segment has its size recorded at
a known place at the end and because we know the end of the last partial segment, all
segment summaries are accessible and all partial segments identifiable. The figure 4.5
contains an example.

Figure 4.5: Partial Segments. The physical segment above contains four partial
segments. Each of them has a segment summary represented by a dark grey
box. In this case, the final partial segment does not contain any data. In other
words, it is a phantom segment. Please note that the dotted lines are not actual
pointers. These can be computed from the address of the segment summary
(the end of the partial segment) and the size of the partial segment stored in
the summary.

Even though segments form a log, this does not continuously grow from the be-
ginning of the device towards the end. As data are overwritten and garbage collected,
any free segment can be the next one in the log. Therefore, the log is actually formed
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by a chronological or logical ordering of the segments. During a crash recovery, a roll
forward utility must be able to follow the chain of segments in the order in which they
were created by the file system module. Therefore, every segment summary contains
the number of the segment that will be used next. Superblock contains the number of
the next segment at the time of the end of a sync operation.

Needles to say, that is not enough. Only half-written segments cannot be recovered.
Therefore, every partial segment summary contains a CRC of itself and of first 32 bytes
of each sector that was written. Furthermore, if the next planned segment was not
actually written to, an old segment could be mistaken for a new one. That is why every
segment is assigned a global number that is incremented every time a new segment
becomes active (i.e. the one being written to). This number is called the segment
counter. Again, the superblock contains the counter of the next segment at the time
of the last sync and every segment summary contains the counter of the next segment
too. This leads to segments chained in a way similar to the figure 4.6. Moreover, the
segment counter is the most important means of specifying time of various events in
LFS. For example, it is necessary to know what the counter was when the last sync
took place or a snapshot was mounted.

Figure 4.6: Segment chains. The figure contains a few consecutive segments on
a disk which happened to form parts of four different chains. Most important
is the currently active one. It begins at superblock and contains segments with
counters 1015, 1016 and 1017. Even though segment 1017 points to segment
523, that is clearly an old segment because its counter does not immediately
follow the previous one. The rest of the chains are not useful for roll-forward but
demonstrate the behavior of the file system. The previous active chain starts
outside of this picture, contains the segment 1014 and then suddenly becomes
the current chain. The old chain 1 also has a beginning outside of the picture,
contains segments 875 and 876 and leaves to some other part of the disk too.
Finally the old chain 2 contains only segment with counter 624. Whichever
segment once pointed to it has been garbage collected, reused, been assigned
a new counter and became a part of a new chain. We can also see that the
segment 1016 once used to be 625 but has been recycled too. Once the segment
624 is reused as well, the old chain 2 will be no more.

4.8 Partial segment layout

Partial segments contain data blocks, indirect blocks, inodes, journal lines, finfo struc-
tures and, as we already know, a segment summary. The figure 4.7 shows how these
parts are ordered and located whereas the Figure 4.8 presents you the definition of
segment summary. Please note that journal block, inodes block and finfos block

are addresses in blocks.
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Figure 4.7: Partial segment structure. Please note that the unused space may
not be present and may actually take up less than a block.

4.8.1 Blocks

If there are any indirect or data blocks present in a partial segment, they are placed
one after another right from the beginning. As we have already stated in the previous
section, the beginning of a partial segment can be determined by subtracting the
partial segment size from the address of the end of the segment summary. Number of
these blocks can be determined from finfos (see below).

4.8.2 Inodes

Inodes, if present, immediately follow the blocks. Currently one on-disk inode has
size of 256 bytes, which means there are 16 inodes per one block. The address of the
first block containing the inodes can be obtained from the inodes block field of the
segment summary which also contains the number of inodes stored in this segment
in inodes count. If this number is not divisible by 16, the rest of the last block is
unused and cleared. Therefore one can traverse the inodes not by their count but until
a structure filled with zeros is reached (as segment building code does).

Again, it is important to bear in mind that the size of the on-disk inode
is a power of two. The current code depends on it and not observing this principle
would break segment building.

4.8.3 Journals

The purpose of journal blocks is to inform the roll-forward utility about directory op-
erations1 These blocks contain so called jline structures that can span block and even
segment boundaries but not across a sync. Each one describes an individual directory
operation and its format differs according to the operation’s type (see section 5.11.8 for
details). The most important rule is that a jline describing a particular operation are
saved no later than in the same partial segment that contains any part of the affected
inodes. On the other hand, it can be stored to disk substantially earlier because jlines
are never reordered and so they reach the disk exactly in the order in which they were
carried out by the operating system.

When there are journal blocks in the partial segment, journal count contains the
number of blocks they span across and journal block points to the first such block.
The end of jlines is determined by reaching a cleared jline structure.

1Directory operations are file system operations that affect multiple inodes and either all
or no changes must take place.
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struct l f s segment summary {
u32 summary checksum ;
u32 data checksum ;
u32 segment s i z e ;

u32 j ou rna l count ;
u32 inodes count ;
u32 f i n f o s c o un t ;

u64 j ou rna l b l o c k ;
u64 inode s b l o ck ;
u64 f i n f o s b l o c k ;

u64 next segment ;
u64 segment counter ;

u32 c r e a t e t ime ;
u32 f l a g s ;

} a t t r i b u t e ( ( packed ) ) ;

Figure 4.8: Segment summary

4.8.4 Finfos

When cleaning a segment, the garbage collector must be able to determine what indi-
vidual blocks in a segment contain. That means to which inode they belong, whether
they hold data or are indirect blocks and what is their index (as described in the
section 4.3. This is accomplished using so called finfo structures. Take a look at
its definition in the figure 4.9. It is a variable length structure consists of a header
identifying the inode and a number of 64-bit unsigned integers containing indices. The
field indirect block count tells how many indices of indirect blocks follow the header
while data block count determines the number of offsets of direct blocks in the finfo.
At the moment, only one of these numbers can be non-zero. version contains the
version and ino the number of the inode the blocks belong to.

Finfos also have size constraints. The Size of struct lfs finfo must be di-
visible by the size of lfs finfo block t which itself must be a power of two.

typedef u64 l f s f i n f o b l o c k t ;
struct l f s f i n f o {

u32 i nd i r e c t b l o c k c oun t ;
u32 data b lock count ;
u32 ve r s i on ;
u32 ino ;

l f s f i n f o b l o c k t block [ ] ;
} a t t r i b u t e ( ( packed ) ) ;

Figure 4.9: Finfo structure definition

The finfo blocks correspond to the indirect and data blocks at the beginning of
the partial segment. First index in first finfo identifies the first block in the partial
segment, the second one refers to the second block and so on. After there are no
indices left in the first finfo, the second one is used etc. See figure 4.10.
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Figure 4.10: Finfos and corresponding blocks. Each grey rectangle is a logical
offset of the corresponding block.



Chapter 5

Kernel Module
Implementation Overview

This chapter describes the concepts behind implementation of LFS kernel module.
Please keep in mind that comments in the source code are an integral and indivisible
part of the documentation. This document covers the implementation from a global
perspective only, it is the comments that deal with individual implementation aspects
and technicalities and that really describe what a particular function or a piece of code
does.

5.1 In-Memory Structures

This section briefly outlines the overall organization of in-memory structures specific
to LFS. For information on general kernel structures, refer to the kernel source and
kernel related literature such as [5]. Most of the in-memory structures are defined
in src/types.h that is included from all c files. Nevertheless, there are other more
specialized header files in the directory as well. All of them are described in table 5.1.
Moreover, several c files define structures that are private to them. These will be dealt
with in later sections where appropriate.

File Description
debug.h contains preprocessor macros used to implement and switch

on and off various debug messages
free space.h contains definitions of structures internal to the garbage

collector
gc.h contains definitions of structures internal to the garbage

collector
indirect.h contains static inline functions for computations of indirect

block indices
segmap.h contains static inline functions for working with a segment

map.
snapshot.h contains definitions and declarations related to snapshot

access and management.
types.h is the most important header file with declarations of ex-

ternal functions and definitions of globally required macros
and structures.

Table 5.1: Header files

From now on, the on-disk structures are also referred to as raw structures. For ex-
ample, whereas by an inode we usually mean the in-memory representation of an entity

25
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such as a file or a directory, the raw inode is used exclusively for a struct lfs inode

on the disk or its image in RAM.

5.1.1 Info structures

As customary in the world of Linux file system programming, every kernel VFS struc-
ture has its file system specific info structure and there are LFS info structures that
do not have an obvious kernel counterpart. Thus, every struct inode of LFS is ac-
tually a part of a struct lfs inode info which is accessible using inline function
LFS INODE(). This info contains, among other things, an image of the raw inode on
the disk.

Similarly, there is an info for the superblock as well. It is called lfs sb info

and is a parameter to most of the functions in the LFS kernel module. It can be
obtained from the kernel struct superblock by feeding it to LFS SBI(). Most other
LFS memory structures can be obtained from it, in one way or another. In general,
the superblock info has three types of fields:

1. General fields such as references to the corresponding struct superblock,
the raw superblock, buffers containing raw superblocks, the device, actual file
system parameters and so on.

2. Masks and shifts for unit conversions and calculationg various offsets. For
example, to obtain the number of blocks from a number of segments, the latter
can be shifted left by blks per seg bits. Similarly, to get a number of a block
from the start of a segment from its address from the beginning of the disk,
apply to it a bitwise AND with blks per seg mask. There are a few such pairs
and using them is preferred to computing the offsets and masks elsewhere.

3. Various subinfos. struct lfs sb info is a large structure and so it is par-
titioned into smaller info structures. Some are included directly, some are al-
located separately and the superblock info contains only pointers. These can
be thought of as subsystem private data and most subsystems have their global
private data stored as an info accessible directly from here.

5.1.2 Inodes and indirect blocks in memory

Most other block device based Linux file systems use the device mapping to read,
cache and store metadata including inodes and indirect blocks. When cache shrinks,
this metadata is written to where they were read from by the device inode address
space operations. Naturally this cannot be done in a file system that is log structured
and therefore we have designed other means of keeping both entities in memory and
writing them back to the disk.

Inodes

Raw inodes are stored inside each instance of the corresponding struct lfs inode info.
Allocation and deallocation of inodes is done in the same way other file systems that use
inode infos do it. The system asks us to allocate an inode by a call to the alloc inode

superblock operation. In response, we allocate whole inode info from a slab but return
only the pointer to the VFS struct inode. Deallocation is done similarly and auto-
matically by by standard means of shrinking the dentry cache and reference counting.

Indirect blocks

As stated above, we also need a special mechanism to cache and write indirect blocks.
We therefore store them in pages of a special address space or mapping which we refer
to as the indirect mapping. It is stored in each struct lfs inode info in field
idir aspace. An index of a page stored in this mapping is the index of the first block
stored in it (See section 4.3, particularly figure 4.1). This mapping has address space
operations similar to those of ordinary data mappings. The indirect blocks are thus
read and written in almost the same way as data blocks.
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5.1.3 Free space accounting and preallocation

LFS fully exploits the inode and page caches. Unlike traditional file systems it does
not map data to specific locations on the disk at the time the user space creates a given
entity but much later when the data are to be written back to the disk. Nevertheless,
when LFS accepts any data from the user space, it is then commited to writing them
to disk because once we have informed the user program data were accepted, there is
no way to revoke that decision. That is why the file system can refuse to write a given
entity only when servicing the syscall or mmap.

In particular, the file system must check there is a free spot for a new entity such
as an inode or a file block whenever a user creates one. This mechanism is called free
space accounting. The idea is simple. We track the amount of free space in the
superblock info and decrease it with every new accepted file block or inode. Because
log structured file systems perform poorly when their disk utilization exceeds 80%
(see [1] and [4]) and because a certain proportion of the disk must be used to store
metadata, we do not allow the user to use more than exactly 80% of the underlying
device and react with ENOSPC to any attempt to do so.

It is also possible that even though there is enough of free space for a write op-
eration to succeed, the system is in an imminent shortage of free segments. In that
particular situation, the garbage collector must be informed there is an emergency1

and all other processes must wait until it makes more segments available.
In order to do this we keep record of the total dirty pages and inodes in the system.

When servicing a syscall that marks an inode or a page dirty we check whether we have
enough free space in segments that are currently empty2 to write the entity in question
without the need to call the garbage collector while keeping at least ten free segments
at collector’s disposal. If this test fails the garbage collector is sent an emergency
message and the process is blocked until more segments become available. In the end
we secure the newly dirty object a spot in the currently free segments, this accounting
is therefore called preallocation.

Tracking accounting states of inodes and blocks

Free space has already been allocated for a block if the pointer at it3 is non-zero (i.e.
the block is not a hole). Because this pointer can contain a meaningful value only after
the object leaves cache and is written to disk, a special value LFS INODE NEW is stored
into it after it is accounted for and before it is actually written to disk. Blocks are
freed by truncate which returns a block to the current free space whenever it discovers
it has removed a block with a non-zero pointer. Every existing inode has always been
accounted for, otherwise it wouldn’t be created.

There is only one variable holding the free space per a mounted file system and it
is free in free space in the superblock info. It contains the number of inodes that
the user is still allowed to store on the disk. Whenever free space for a block should
be allocated, the number of inodes that entirely cover a block is subtracted from this
value.

On the other hand, there are separate counters of preallocated blocks and inodes.
One can tell whether an inode has been preallocated by examining its flags for the
LFS II PREALLOCATED BIT. A block is preallocated if and only if the highest order bit
(LFS INODE PREALLOC FLAG) of its pointer is set. That means only the lower 63 bits
of the pointer actually contain the physical address of the block on the device and
the pointer must be masked with LFS INODE ADDR MASK whenever used. The function
lfs is prealloc() returns whether a given pointer has the preallocation bit set or
not.

Storing these state information in pointers and not for example in the correspond-
ing buffer head flags is not accidental. Truncate must correctly update both free space
accounting and preallocation but does not have the direct blocks or their buffer heads
at its disposal because both have already been destroyed. On the other hand, inodes
and indirect blocks still must exist and information stored therein is still accessible.

1See message LFS GC INFO WORK in the section 5.10.1.
2See section 5.8.3
3Either an element of the i blocks array in inode or of an indirect block.
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Moreover, it is essential that if a block is free space accounted for, all its superior
indirect blocks are also. Similarly, a block that is preallocated has all its superior
blocks preallocate too. Last but not least, the ifile blocks are never preallocated, there
must always be enough space in free segments to store all dirty blocks, inodes and
the whole ifile, no matter how many dirty blocks there are in the inode. Otherwise,
emergency takes place. This decision ensures the segment building code which must
never wait for the garbage collector can modify the ifile in any way it decides to.

Performing accounting checks

We have already stressed that the file system must check whether there is enough free
space when servicing a system call that creates the given new entity so that the user
process can be informed should this test fail. Similarly, preallocation test must also
be performed when servicing a system calls that marks a given object dirty because at
that time it is safe to put the current process to sleep. In this way we avoid blocking
processes that free memory by flushing the page cache which is essential because
garbage collecting can be memory demanding and so this would lead to deadlocks and
out-of-memory problems.

Data blocks can be created and marked dirty by the write syscall or any of its
variants and through mmap4.In the former case, the implementation of the syscall
invokes our prepare write() address space operation. In the latter case, whenever a
process is about to mark a page dirty through mmap, the kernel calls our page mkwrite

vm operation5 which also internally calls the same prepare write().
This address space operation is then responsible for marking the given blocks

dirty as well as all indirect blocks on the way to the inode and the inode itself. During
this process, each newly created block is given a free space from the current free
space variable and each non-preallocated block is preallocated. However, preallocation
is split in two steps because a process waiting for the garbage collector must not
have any pages locked or hold certain semaphores. Therefore, enough preallocation
blocks are acquired right in the beginning. If there are not enough free segments,
the process releases the page held, blocks until there are enough segments and then
always immediately returns AOP TRUNCATED PAGE. The caller is then responsible for
reacquiring the necessary page and calling the operation again. Once the necessary
number of blocks is acquired, they are distributed among the current block and its
superior blocks, if they haven’t been already preallocated. At this point, the highest
order bits in their pointers are set, as described above. Finally, all unused acquired
preallocation blocks are returned to the global variable. Directory operations and
truncate acquire preallocation blocks themselves because they need to do it before
locking certain semaphores.

Free space is acquired for inodes when they are created in the lfs ifile new ino().
Inodes are preallocated whenever they are marked dirty in our handler of dirty inode()

super operation. However, this handler must not sleep and so the process must be sus-
pended later on when processing either a prepare write() or set attr() operations.

Free space is returned when truncate is about to free a block that was not a hole
or an inode is deleted. Preallocation is returned whenever a dirty block or an inode is
sent to the disk. The code that writes back dirty indirect blocks refuses to write those
containing preallocated pointers. Similarly, pointers in inodes are masked before being
written. Therefore, there is a per-inode read write semaphore to mutually exclude
inode syncs and prepare write() because otherwise some indirect blocks might not
have been synced.

5.2 Reading files

LFS leaves the generic kernel functions to deliver data from the page cache to the user
space, whether in the form of standard read system call, any of its variants or mmap.
When reading data, LFS only fills in the cache.

4Even though it is illegal in Linux to mmap a block behind the end of file, a user process
can write data to a hole inside a file and thus create a block nevertheless.

5This operation is provided by David Howell’s patch.
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First of all, however, the inode must be read, usually as an indirect response to a
call to iget(). This means its address is retrieved from the ifile, the raw inode is read
from that address (both operations are performed in lfs read inode internal()) and
finally the inode info together with kernel VFS inode are both initialized with the read
data (in lfs read inode()). There is an exception to this rule which takes place when
the inode in question is currently being written and which is described in section 5.6.

Pages from the data mappings are read by generic functions mpage readpage()

and mpage readpages() and both use lfs get block() to map a given buffer to
a specific spot on the disk. Pages of the indirect mapping are read by our func-
tion lfs indirect readpage() which is a modification of a generic kernel function
block read full page() that does not check whether reads exceed the file size. This
function internally calls lfs get block indirect() to map buffers to locations to disk.
Both mapping functions in the end call read block() which either looks up the re-
quired position from a pointer in an inode or uses the same mechanism to read a
superior indirect page and locates the corresponding pointer there.

5.3 Writing data

This section describes how dirty data in various caches get written to disk. Please note
that this chapter does not cover the sync operation which requires specific consistency
measures. It will be dealt with thoroughly in the section 5.4.

5.3.1 Tasks performed by the segment building code

All data and metadata except superblocks are written into a log consisting of segments.
At any given moment the currently written data are being stored into a particular
segment and a particular partial segment. Moreover, data has not been written safely
until at least a partial segment is finished. Therefore, the code that writes data to
the disk is usually called the segment building code. It is almost entirely present in
src/log.c. This part of the file system, complex as it is, naturally has its own info
structure. It is called struct lfs log info and you can find it in src/types.h. This
structure is actually a part of the superblock info (see section 5.1.1) called log. We
will often refer to various fields in the log info throughout this section.

The Linux kernel, LFS garbage collector and LFS journaling subsystem can ask
the segment building to perform these operations:

• Write pages. LFS obviously implements both writepage() and writepages()

handlers of data and indirect address spaces of each LFS inode. These methods
are called by pdflush, kswapd, memory management routines, sync, fsync, msync
and so on. Last but not least, these operations may be triggered by some other
part of the segment building code.

• Write inodes. LFS also carries out superblock operation write inode().

• Garbage collecting. Once garbage collector identifies which pages and inodes
should be moved to the current segment it uses this subsystem to actually write
them.

• Flush journals. Even though this is very rare and journals are usually written
out because parts of relevant inodes are, the journaling subsystem can decide
the journal data occupy too much memory and ask the segment building part
to flush some of it to the device.

5.3.2 Stages of the segment building code

Now let us have a look at various stages of building a partial segment (see also fig-
ure 5.1):

1. Initialization. The decision whether to continue in the current (physical) seg-
ment or not is made when finishing a partial segment so this has already been
determined at this stage. Of course, initialization of the file system is the only
exception and in that case a new physical segment is set up.
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Figure 5.1: Segment building. In picture a) there is a newly initialized partial
segment and one block written to it. At the same time, a corresponding finfo
has been created and planned. Other plans are still empty. In b), the system
asked LFS to write an inode and the file system stored it in the inode plan.
Picture c) shows the segment and plans later on, when there is a number of
blocks already written to the device and two pages of inodes, a page of journal
lines and three pages of finfos planned. Picture d) shows what happens when
LFS decides to finish the segment at this time. Basically, all plans are written
to the disk together with a segment summary.
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Every time we write segment we must know what the next one will be (see
section 4.7 and figure 4.6). Therefore, we always need to request a segment in
advance a call to usage get seg() so that the segment management subsystem
finds a new segment for us. All that has been described in this point so far is
done by function find segment().

Finally, majority of log info structures are initialized in init ordinary segment().

2. Writing pages. When the system asks us to write a page or a bunch of pages
from a mapping, we do it straight away and do not queue the pages ourselves
in any way6 The blocks are written from the beginning of the current partial
segment in the order they are passed to the LFS by kernel or retrieved from the
given mapping.

However, there is more to be done. At the same time, finfo structures are
prepared in memory so that when the segment is about to be finished, they can
be written to disk. Similarly, journal pages that contain jlines related to the
processed inode (the inode to which the written pages belong) are retrieved from
the journaling subsystem and queued for writing which will take place when the
segment is about to be finished.

This means that there can be a lot of data waiting in the memory to be written
just before the current partial segment is closed. It is essential to guarantee there
will be enough space in the current segment for all of it. This is accomplished by
a remaining blocks counter in the log info called remblock which is decremented
each time a block of data is written to the disk or sizes of planned finfos, journals
or inodes (see below) grow beyond another block. When this number reaches
zero, the current segment must be finished.

3. Queueing inodes. Whenever the system asks LFS to write an inode, it is not
written straight away but the corresponding raw inode is queued instead. Ihash
subsystem is in place to make sure no inode is written multiple times into any
single partial segment. (See section 5.6 for information on how this is done and
other issues ihash solves.)

Writing pages and queuing inodes of course can and often does interleave.

4. Finishing the segment. The most obvious reason to finish a partial segment
is finishing the physical one as well. Once we have determined that there is
just enough space for all the queued structures, they must be written and a new
segment started. Nevertheless, there may be other reasons too. Partial segments
are finished before the ifile is synced during a sync, for example. Fsync or
flushing excessive amounts of journals (see section 5.3.1) are another examples.

Finishing segment basically means flushing inodes, journals and finfos to disk,
calculating CRCs and creating a segment summary. Finishing partial segments
also involves creation of a phantom partial segment (i.e. its summary). The
whole procedure is described in detail in the section 5.3.7.

The fact that we do not queue dirty blocks is very desirable as it prevents various
out of memory (OOM) problems and lockups. This is exactly the reason why have
chosen the structure of LFS segments with a segment summary at the end rather that
at the beginning (see section 4.8).

5.3.3 Plans

Storing inodes, journals and finfos as described above clearly needs some common
infrastructure. We say that this data are planned to be written and the queues
that store them are called plans. Normal segment building code uses an inode plan,
a journal plan and a segsum plan, all of which are directly accessible from the
log info. The segsum plan actually contains mainly finfos and has its name because
in the early stages of the LFS project, finfos were considered a part of the segment
summary. Nevertheless, the segsum plan also often contains the segment summary
(see section 5.3.7) even though it may not necessarily be so. Plans are also extensively
used when syncing the ifile but that is outside of the scope of this section and is
covered properly in the section 5.4.

6Of course, the block I/O scheduler may queue our BIO requests.
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Figure 5.2: Plan item. In this example there are four blocks within a page and
thus only four important bits in the mask. Because the mask is set to 1001, at
this time only blocks zero and three are planned.

A plan is merely a list of struct lfs plan item instances. Each structure contains
a pointer to a page with the planned data and a bit mask that tells which blocks in
the page are supposed to be written and which are not7. The lowest-order bit of the
mask corresponds to the first block within the page, the second lowest to the second
block and so on. When a bit in the mask is set, the corresponding block is about to
be written and the other way round. Figure 5.2 gives an example. Plan items are kept
in a standard kernel linked list and together they form a plan chain.

All planned pages must be allocated by alloc pages() so that once they are
written they can be freed by free pages(). The plan items themselves are obtained
from plan slab slab. All plans considered in this section are empty when a new
partial segment is initialized. New items are added to them and other operations
are performed on them by functions listed in table 5.2. The way plan chains are
written to the device will be described in section 5.3.7, their deallocation (under normal
conditions) in section 5.3.8.

Function Description
grab plan() allocates a plan item and initializes it with a

given page and mask.
release plan() frees the plan info.
error destroy plan() deallocates a whole plan chain. Intended for

use when cleaning up after an error.
append segsum plan() appends a given plan item to the current seg-

sum plan.
append journal plan() appends a given plan item to the current jour-

nal plan.
append inode plan() appends a given plan item to the current inode

plan.
get planned page() allocates a page and a plan item and sets them

up together with a provided mask.

Table 5.2: Plan manipulation functions

7At the moment there is only one block per page and so the mask always contains 1.
However, it is going to be necessary to support file systems with smaller block sizes.
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5.3.4 Synchronization

It is self-evident that most of the write operations must be serialized because there is
only one segment being built and pages appended to its end at any moment. In order
to simplify matters further, we have decided to serialize all of them by a mutex. The
mutex is located in log info and is called log mutex. All operations discussed above
either themselves lock it or require it is already acquired.

The segment building module must also be synchronized with other events in
the kernel, most notably truncate. That is why all inode infos contain a read-write
semaphore called truncate rwsem which is locked for reading whenever working with
a particular inode or pages belonging to either of its mappings. Truncate itself locks it
for writing because it locks the pages in the opposite order than all other operations.
A great deal of synchronization is also performed through Linux page locks, most of
which is not specific to LFS. On the other hand, the pointers in inodes and indirect
blocks are protected by page locks of the block they correspond to.

Order of locking is the key instrument to avoid deadlocks. In this case, the
log mutex must be acquired first, the truncate rwsem second and only afterwards
a page can be locked. This requirement forces a small hack in lfs writepage() (see
below).

5.3.5 Writing pages

Linux kernel can ask a file system to write out a single page or to try to find a specified
number of dirty pages in a mapping and flush them. The first request is communicated
to LFS by calling the writepage() address space operation and is handled by the LFS
segment building code for both data and indirect mappings. Both handlers do nothing
but call lfs writepage() with a correct value in its indirect parameter. On the
other hand, writing out several dirty pages from a given mapping is performed by the
writepages() address space operation which is also handled by LFS for both kind of
mappings. Like in the previous case, they call a common routine lfs writepages().
See a subset of the call graph of the page writeout handlers on the figure 5.3.

Figure 5.3: Page write call graph. Address space operation writepage() and
writepages() handlers are marked by grey color. page writeout() is printed
in bold because this is the function which, among other things, creates and
issues I/O requests.
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Writepage

lfs writepage() gets the page that needs to be written as a parameter. The page
is obtained locked which violates the required lock ordering (see section 5.3.4 above).
The page is therefore released, log mutex and truncate semaphore are acquired and
then the page is locked again. The code of course must check it has not been truncated
and is still suitable for writing8.

Afterwards the page cache writeout control structure (see below) is initialized and
perfile page processing() called. This function is invoked each time a different in-
ode is being written. It uses add journal() to plan all jlines relevant to this inode and
place finfo() to create a new finfo header in the segsum plan. The latter function is
a bit complex because the new finfo header can span across block and page boundaries
and different actions must be taken in each case.

The most important function called at this place is page writeout() which in-
spects the page and initiates I/O. We will deal with this function separately below.

Finally, lfs writepage calls lfs submit pcw() to submit any pending BIO re-
quest, unlocks the locks held and calls write gc stuff() to process potential requests
from the garbage collector.

Writepages

The only task of lfs writepages() is to interleave the writes requested by the Linux
kernel with those required by the garbage collector. The garbage collector requests
are honored first and with no upper limit on the total number of pages written in one
go so that there are segments ready when they are needed for new data. The garbage
is written by write gc stuff() like in the previous case.

Writing dirty pages of the given mapping is the task of lfs writepages(). The
function is similar to Linux kernel generic mpage writepages() function. It acquires
the log mutex first so that if it creates a finfo header it will remain the current header
throughout the rest of its execution. Next, the function obtains a private array of
page pointers with dirty pages of the given mapping and processes them one by one.
Each page is locked and checked whether it should still be written (i.e. it has not been
truncated and is still dirty).

perfile page processing() is called once if there has been a dirty page in the
given mapping. The function performs the same tasks as in the case of writepage().
On the other hand, page writeout() which is described below is called on every valid
dirty page.

lfs writepages() can be limited in the number of pages to flush to the disk
so that the garbage collector items are guaranteed to be processed once in a while.
When this maximum number has been reached or all dirty pages have been written,
the function submits any pending BIO, unlocks log mutex and returns. In that case
it returns a special value so that lfs writepages() calls it again after it has honored
all pending garbage collector requests.

Page cache writeout control structure

lfs writepages(), lfs writepage() and page writeout() and a few other minor
functions need to share a great deal of parameters. For the reasons of clarity of
the code, these have been placed into a structure called struct pcw control (page
cache writeout control structure). Its contents includes a reference to the current
page, whether the page is indirect, the inode, the obtained Linux kernel writeback
control structure and other status information. Most importantly, however, there is
also a reference to the current BIO (see [5], chapter 13) that is shared among different
invocations of page writeout() within a single execution of lfs writepages(). The
structure also contains information about the currently processed block and the current
dirty area of the page which can be added to the BIO by lfs bio pcw(). If the

8Even though this is not a very clean approach, it has been discussed in the Linux-fsdevel
mailing list and has been generally regarded as tricky but viable. Our experiments seem to
have confirmed this.
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current BIO becomes full, it is submitted and a new one allocated. Finally, the last
unsubmitted I/O vector is sent to the block layer by lfs submit pcw().

Single page write

The most important function in this context that has not yet been discussed in detail
is page writeout(). The function begins with initializing a few structures of the page
cache writeout control structure it has obtained from the caller. Next, if the page
straddles the end of file, the part behind the end is cleared with zeros.

Most importantly, the function traverses dirty page buffers and performs the fol-
lowing actions:

1. check space finfo() adds a finfo entry to the current finfo. It may find out
there is no room left for the finfo entry and the new block in the current segment.
In that case it finishes the current segment, starts a new one, creates a new finfo
header and adds the new entry into the new finfo.

2. The metadata pointing to the written entity is updated. The way of do-
ing this differs for data blocks and for indirect blocks and therefore they are
performed by different functions, specifically by update data supermeta() and
update indirect supermeta(). The functions vary in how they locate the ad-
dress that needs to be changed and then call update supermeta() to change
it and initiate necessary segment writeouts (see section 5.8).

3. Segment CRC calculation is extended to cover the beginning of the current
block.

4. The current dirty area of the page is extended or a new one is founded. This
area is added to the current BIO once a clean buffer is encountered or all buffers
have been processed.

5. Finally the buffer is marked as clean and several internal variables are updated.
Let us at least briefly mention curblock of log info that contains the address
of the current block and remblock which stores the number of blocks that are
remaining in this segment.

In the end, the page is marked as under writeback and unlocked.
Please note that this is just a brief outline, refer to the source code for details.

5.3.6 Writing inodes

Figure 5.4: Inode planning call graph. Superblock operation
lfs write inode() is marked by grey color.

Writing inodes is much simpler but it is done in two phases. First, an inode
is planned. Later on, when the current segment is being finished, its metadata are
updated and the raw inode is written to disk. The call graph of the first phase can be
found in figure 5.4.

Linux kernel does not know about LFS indirect mappings. It can therefore issue
destruction of an inode that has dirty pages in its indirect mapping. In order to avoid
this, the dirty mapping is synced by lfs write inode() each time an inode is about
to be planned to be written.
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lfs write inode() takes care of locking (it locks both the log mutex and inode’s
truncate rwsem) and journal planning. Most importantly, it calls add inode() to add
the inode to the current inode plan. Both actions can cause the current segment to
be finished and a new one started.

add inode() attempts to lookup the inode in the ihash (see section 5.6) and if
it succeeds, it copies the new raw inode over the old one. Otherwise it copies the
raw inode into a planned allocated page. The latter case can involve page and plan
allocation, updating and checking the number of remaining blocks in this segment and
even segment finishing.

The final placement of the planned inodes are not known until the segment is
being finished. The inode table cannot be therefore updated and relevant segment
writeouts (see section 5.8) issued until this moment. Therefore, before the inodes are
actually sent to the device, update inode table() is called to process the inode plan.
It traverses the plan chain and calls update itable entry() on every raw inode. This
function updates the relevant inode table entries and issues the segment writeouts. Not
surprisingly, the ifile inode is handled in a special way because its inode table entry is
not used and writeouts are issued differently during sync (see section 5.4).

5.3.7 Segment finishing

When a partial segment is being finished by finish segment(), it proceeds with the
following steps:

1. compute segment end() calculates the expected end of the current partial seg-
ment from the current block and the number of blocks occupied by planned
metadata. Based on this information, it decides whether it will continue with a
new partial segment within the current physical segment or move on to a new
one. The latter case may require there is a small gap in between finfos and the
segment summary. This happens when a new partial segment would not fit into
the remaining space and so the remaining free space is included in the current
one.

2. create segsum() allocates memory for the segment summary. The calculations
carried out in the previous step decide whether the segment summary is created
within the segsum plan or allocated separately. When LFS is about to continue
writing to the same segment, a page is also allocated for the phantom segment
summary (see section 4.7).

3. Ihash entries are marked as under writeback. See section 5.6 for details.

4. update inode table() is called. It has already been described in the sec-
tion 5.3.6.

5. Segment CRC calculation is extended to cover planned inodes, journals and
finfos.

6. BIOs are issued for planned inodes and journals.

7. The segment summary is created within the allocated space. At this point we
know the exact locations of inodes, journals and finfos within the segment.

8. The segsum plan chain write is initiated.

9. If necessary, the phantom segment summary is created within the allocate space.

10. If there is a phantom segment summary or the ordinary segment summary is
not placed within the segsum plan, they are also written to the disk. The two
cases are mutually exclusive so the same code is used to do both.

11. Information about the new segment must be stored in the segment usage table.
However, this must be done when no page is locked and therefore this informa-
tion is stored to a buffer by add set cache item(). The code that unlocks pages
then calls flush usage set cache() which finally asks the segment management
to include this information in the table.

12. seg start in the log info is set so that segment initialization knows where the
next partial segment is about to begin.
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5.3.8 BIO finish callbacks

The BIOs issued by LFS can be of the following types:

• BIOs writing page cache pages,

• BIOs writing plan chains and

• those writing separate and phantom segment summaries.

Table 5.3 gives a more exhaustive overview of all functions that generate block write
requests in LFS.

Function Description
lfs submit pcw() is used to write data blocks to disk when not sync-

ing. The page cache finish handlers are used and no
barriers issued.

bio plan() is used to flush journals and segsum plans when
finishing an ordinary (i.e. non-sync) segment.
bioend free all() is used as the finish handler.
This function is capable of issuing all kinds of bar-
riers but currently it is not used to generate sync
barriers.

bio inode plan() is used to flush inode plans to disk. It does not issue
barriers and uses bioend free inodes() to delete
written inodes from the ihash (see section 5.6) and
free the enqueued pages.

bio sync data() is used to flush page cache pages during sync. It uses
the same handlers as lfs submit pcw() does.

bio sync inodes() is similar to bio inode plan() but does not incre-
ment the curblock. It is used to write the ifile inode
during sync.

bio sync meta() is used to write journals and finfos during sync. The
bioend free all() is the finish handler of choice
and either no barrier or the full sync barrier is is-
sued.

Table 5.3: BIO issuing functions

Another and perhaps more important division between BIOs is into those which
write page cache pages and those that write pages allocated by alloc pages(). The
first group currently uses the bioend pcache simple() to clear the pages’ writeback
flag when the write is finished. Nevertheless, there is a handler ready for filesystems
with multiple blocks per page called bioend pcache partial().

Allocated pages are deallocated by bioend free all() after they are flushed to
the disk. Pages carrying inodes are processed by bioend remove inodes() so that
written inodes are removed from ihash before the deallocation happens. Moreover,
these BIOs may be issued as barriers. Linux kernel BIO barrier is a special BIO flag
described in [6] that prevents the block layer from reordering write requests across this
particular one. LFS issues barriers when finishing segments for several reasons. The
most obvious is waiting on I/O to finish before we exit from sync and fsync. However,
we also issue barriers every time we finish a segment so that we know all data marked
as written out in the segment usage table have actually been written out and this
information is then propagated to segment management.

Because barriers are used for a variety of purposes in LFS we internally differen-
tiate in between three types of barriers. BIOs issued as barriers carry along them a
small structure called lfs barrier info that contain information internal to segment
management, the barrier kind and so on. The three types of barriers are:

• Simple barriers. Segment management is informed a segment has been fin-
ished and the barrier info is deallocated by the BIO finish handler. No process
ever waits for this barrier.
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• Sync barriers. Segment management is informed a sync has been finished.
The process executing the sync syscall waits on this barrier to finish and then
deallocates the associated barrier info.

• Fsync barriers. These barriers are very similar to sync barriers in that they
are being waited on and the initiators deallocate the corresponding barrier info.
The only difference is that the segment management is not informed there was
a full sync.

5.3.9 Dealing with errors

When a BIO finish handler detects an error, it sets the failure flag in log info and
adds the number of the current segment into an array in the same structure. A few
functions that have already been mentioned in this section call check failure() to
check the flag and if it is set to start a new physical segment and mark all segments in
the array mentioned above as bad. The emergency flag is also set when a new segment
cannot be initiated due to an I/O error.

5.3.10 Garbage collector writes

When garbage collector identifies the live data and inodes in a segment that is about
to be cleaned, it queues this information and then invokes write gc stuff() to write
all queued entities to a new location. In order to guarantee a certain degree of priority
to the garbage collected data, ordinary segment building functions also regularly call
this function regularly.

Garbage collector does not store individual pages but mappings that are written
by lfs writepages() described earlier in this section. On the other hand, inodes are
returned individually and they are planned by a direct call to lfs write inode().
Garbage collection of inodes therefore does not involve syncing the indirect mapping
because it is not necessary.

5.4 Syncing

Implementation of the sync syscall must ensure three things:

1. All dirty cached data must be written do disk.

2. All parts of directory operations (all inodes, data pages and journals) must be
written either before or after the ifile is synced.

3. The ifile must be brought into a consistent state.

The first part of this section is dedicated to the first two tasks listed above because
they are very interconnected. The rest of this section considers writing the ifile so that
it is full consistent with itself.

5.4.1 Flushing cache

Cached data are flushed partly by the Linux kernel but unfortunately it does not
guarantee all of it is synced before the sync super block operation is called. We therefore
keep a list of dirty inodes and sync all of them in that operation ourselves. This list
and all relevant functions can be found in file src/consistency.c and they should be
fairly simple to understand. This queue never contains the ifile which is taken care of
differently later on.

While flushing the cache, we must make sure either all or no parts of a directory
operation (all inodes and the jlines) are sent to disk. This is achieved by a read-
write semaphore that is tweaked a bit so that it does not starve the writer. Directory
operations lock it for reading while the sync functions down it for writing. Finally,
after the semaphore is acquired for writing and before dirty inodes are synced, the
journaling subsystem is forced to start a new page so that a jline does not span across
the sync. The old jlines are then flushed to disk when the relevant inodes or their
parts are.
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5.4.2 Planning a consistent ifile

Whenever a block is written to a new position on the disk, the segment usage table
is updated because the number of live blocks of the old segment is decremented (this
is also referred to as a usage writeout). Moreover, whenever a segment is finished,
the table must also be updated with the new numbers of blocks and inodes residing in
the new segment. Both operations therefore mean that pages of the ifile are marked
dirty. This means that trying to obtain a consistent image of the ifile by iteratively
writing all dirty pages until all of them are clean would result into an infinite loop.
The solution to this problem is to plan the writes rather than immediately flush them
to the device. In this way, if a page is dirty but it has already been planned, it is not
planned again.

The infrastructure to plan pages has been described in section 5.3.3. When syncing,
it is also used to plan the ifile page cache pages and associated finfos. The only planned
inode during this phase of a sync is the ifile inode and it is the last planned entity
during the ifile sync. There are no journals processed during this last stage.

struct l f s s yn c s e gmen t {
struct l i s t h e a d l i s t ;
s e c t o r t segnum ;
l f s a d d r t s t a r t b l o c k ;
struct l i s t h e a d data p lan ;
l f s a d d r t inode b lo ck ;
struct l i s t h e a d inode p lan ;
l f s a d d r t s s b l o c k ;
struct l i s t h e a d s s p l an ;
int phantom ;
int s epara te ;
l f s a d d r t end ;
l f s a d d r t l a s t ;
struct page ∗page ;

} ;

Figure 5.5: Sync segment plan definition

The ifile, however, can span across multiple (partial) segments. The structure
lfs sync segment (see figure 5.5) represents such a partial segment. They are chained
together by a linked list and represent a plan of segments (see figure 5.6). The whole
chain is accessible from the log info’s segments field, the current one can be found in
cur sseg in the same structure. Each structure, among other things, stores its own
plan of page cache pages, inode plan and a segsum plan. If there is a phantom or
separate segment summary, it is flagged in the relevant field and allocated in the given
page. These structures are updated as pages and inodes are being planned. Once
remblock reaches zero, the current segment is enqueued by finish sync segment()

and a new one is created and initialized by init sync segment().

5.4.3 Building the sync plan

The strategy of producing the sync plan is the following. First, we sweep through
both data and indirect mapping of the inode and plan all dirty pages we find. Iden-
tifying the dirty pages is done in function sync ifile mapping(), the pages are then
locked by lock add ifile page(). These two functions are in many ways similar to
lfs writepages(). Buffers of these pages are then processed by add ifile page()

which may resemble page writeout() but differs in a few important aspects.

As we have already said, it does not issue I/O but plans the dirty buffers instead.
One of the key features is that when any other block (of the ifile) is marked dirty
due to metadata updates, it is enqueued as a request to write. The request is formed
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Figure 5.6: Sync segment plans

of a list of small page handlers called struct sync req (see figure 5.7) which refer
to a page and indicate from what mapping that page comes. Pages are added to
this queue at two occasions: When pointers in indirect blocks are modified and when
segment usage table entries are updated. In the latter case, the segment management
code actually enqueues the relevant buffers by calling lfs sync enqueue buffer().
After both mappings are traversed, the pages in the request queue are planned by
lock add ifile page() until the queue is empty.

struct sync req {
struct l i s t h e a d l i s t ;
struct page ∗page ;
int i n d i r e c t ;

} ;

Figure 5.7: Sync segment plan definition

To avoid planning or queuing pages that are already planned or queued, two LFS
specific buffer head flags have been introduced. The first one is called queued and
is set when the page containing this buffer has been enqueued because this buffer
has been marked dirty. The second one is known as planned and it is set when the
buffer is included in the data plan of the current sync segment plan. Both flags are
cleared just before their data plan is sent to disk and under certain error conditions.
Understandably, a buffer is not queued if it has either of the flags set and it is not
planned unless its planned flag is zero.

When the request queue has been emptied, the ifile inode is added to it and the
current sync segment planning is finished.

5.4.4 Flushing the segment plan

The plan that has been built as described in the previous section is then flushed to disk
by bio ifile sync(). This function processes the planned segments one after another
in two steps. First, the buffer flags described in previous section are cleared in all
queued buffers and then all planned entities are flushed to disk by bio sync segment().
This function issues BIOs in a way similar to finish segment() and also issues a
sync barrier (see section 5.3.8) after flushing the last segment.

When all BIOs have been submitted, a new ordinary segment is initialized, the
superblock is written so that its raw image on the disk contains the new ifile inode
address, next block and segment counter. This is followed by waiting on the sync
barrier BIO to complete. Finally, as locks are unlocked, the file system has been
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successfully synced and the segment management subsystem and the garbage collector
are informed about it (see section 5.8.3).

5.5 Fsync

Implementation of fsync in LFS is very simple. It consists of flushing cached data from
both data and indirect mappings, planning the inode and finishing the current partial
segment (which in turn writes the raw inode to disk). If a system failure occurs after
this point, the roll forward utility will be able to recover the written data.

5.6 Ihash

There are two potential problems with planning and late flushing of inodes as described
in the section 5.3.6:

1. The scheme as described would often store a single inode multiple times in the
same partial segment.

2. When the Linux kernel is about to free a dirty inode, it asks the file system to
synchronously write it to the disk. Once this operation returns, the file system
assumes the inode is safely written and may be read from the device if needed
again. On the other hand, LFS merely plans the raw inode to an allocated page
which is written when the current partial segment is finished. However, there is
a time frame in between the planning and actual writeout in which the kernel
expects the inode is on the disk but it isn’t. Any call to lfs read inode() would
then either fail or produce incorrect results.

Both these issues are solved by a hash table called ihash.

5.6.1 Hash table

Ihash is a double pointer hash table consisting of 8192 lfs ihash entry structures
(see figure 5.8). Each entry with a non-zero ino contains a pointer to a planned raw
inode and a writeback flag indicating it is already being written by a BIO.

struct l f s i h a s h e n t r y {
i n o t ino ;
int next ;
int f i r s t ;
struct l f s i n o d e ∗ raw inode ;
int writeback ;

} ;

Figure 5.8: Sync segment plan definition

As already mentioned above, the ihash is a double pointer hash table. In order to
locate an inode stored in it, its inode number is hashed by hash function hash long()

provided by kernel to calculate its chain number. The chain number is used as an index
to the hash table and the first field of the obtained structure is examined because it
contains the index at which the particular chain begins. Chain items are connected in
a single direction linked list by the next index. All functions using and manipulating
the ihash can be founds in src/ihash.c and should be easy to understand.

Manipulating and searching the ihash is always protected by a spinlock in the ihash
info structure that is a part of the superblock info.

5.6.2 Use cases

The ihash is used twice when an inode is planned. Before a new spot is allocated for
a raw inode LFS tries to find it in the ihash. If it is found and is not undergoing
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writeback, the raw inode that is already planned is overwritten with new data. This
ensures a single inode is never present multiple times in a partial segment which was
happening quite often before ihash was implemented. If the inode is not already
present in the ihash, it is inserted and if it is present but marked as under writeback,
the pointer in the ihash entry is updated and the writeback flag cleared.

Conversely, when an inode is requested to be read, the ihash is tried first. If it is
found in the ihash, the raw data referenced there are used regardless of the writeback

flag. On the other hand when inodes are being deleted, they are removed from the
ihash because the associated ihash item no longer contains valid information.

Just before all inodes are sent to disk, all entries in the ihash are marked as under
writeback. When a BIO carrying inodes terminates, the finish handler identifies all
inodes present in the pages that were written and deletes their entries from the ihash,
unless their writeback is not set which happens when the inode was re-inserted into
the hash after the I/O has been submitted.

5.7 Truncate

From the Linux kernel’s perspective, the file truncate operation is divided into two
phases. First, the inode size is set to the new value, the data mapping is truncated
to reflect the new size and the straddling part of the last page is cleared with zeroes.
Afterwards, the file system is told to update its own private structures to reflect the
new size by invoking the file system’s truncate inode operation.

LFS must do three things. Obviously, pointers to blocks in the inode and indirect
blocks must be invalidated, free space accounting and preallocation state must be
updated and segment writeouts must be issued so that segments can be freed. All these
tasks are performed by calling lfs trunc iblocks(). Dealing with direct addresses
stored in the inode is easy. If such a pointer is “behind” the new file size and contains
a non-zero value, it is cleared (by inode set addr()), one block is added to the free
space accounting and a block is subtracted from the corresponding segment usage table
item by function free block(). This function also checks the preallocation flag of
the discarded block and if it is set decrements the global counter of preallocated pages.
Altogether, we say that such a block is dropped.

The real challenge here are the indirect blocks. Consider the example in figure 5.9.
The highlighted address in indirect block j points to the new last block of the given
file. It is evident that the whole indirect block k must be removed, i entirely kept and
roughly a half of entries must be cleared in block j.

lfs trunc iblocks() starts by calling dblock to path() to identify all indirect
blocks through which the end of file “passes”. Then at each level of indirection, the
addresses with higher indices and their children are dropped fully while the one exactly
at the particular index is dropped partially. However, even a partial drop may end up
as a whole one when the file ends exactly at the border of the first of the block in
question.

Speaking implementation-wise, we start with calling drop iblock partialy()

on the identified border block at the highest level (the block 1 in the example on the
figure 5.9). If we are not at leaf level, the same function is called on the border block
one level below (block j in the same example). In any case, all non-hole indices higher
than the border index are dropped by drop iblock whole(). If the block finds out
it is completely empty, it signals this to the caller so that it can do the same decision
and clear the relevant address. Full drops mean the whole subtree is traversed and any
non-hole pointer is dropped unconditionally. Finally, the no longer necessary indirect
pages are themselves truncated.

The whole operation described in this section is performed with truncate rwsem

of the relevant inode locked for writing so that any actions do not interfere with the
segment building code or garbage collection (see section 5.3.4).



5.8. SEGMENT MANAGEMENT 43

Figure 5.9: Truncating indirect blocks. The white boxes or parts of boxes are
holes, the grey ones denote valid addresses on the disk.

5.8 Segment management

Segments are the basic unit of free space reclaim of all log structured file systems,
a segment can be reused only once all live data have been either deleted or moved
elsewhere. This basic rule requires the LFS to track the state of all segments and
dictates an ability to find a new empty segment for future writebacks whenever neces-
sary. The state of a segment consists of the number of inodes and blocks stored in it,
various flags and its segment counter. The basic structure used to persistently store
all this information for each segment is the segment usage table stored in the ifile (see
section 4.5). A segment can fall into any one of the following categories:

Superblock segments contain one of the four superblocks and nothing else. They
are never reclaimed.

Reserved segments are segments reserved by the user and are left untouched by the
file system. LFS currently creates one such reserved segment at the beginning
of the disk and actually requires it is not used.

Bad segments are segments in which a write operation has failed at some point in
the past. LFS will not try to reuse such segments any more.

Empty segments contain no live data and are ready for immediate reuse.

Used segments do contain some live data. Obviously, they cannot be reclaimed and
overwritten.

Possibly free segments do not contain any live data but some event must take
place before the segment may be safely reused. These cases are discussed in the
section 5.8.3.

Table 5.4 shows how information in segment summary determines the category of a
segment. Basically, there are three fundamental operations performed by the segment
management and they are covered in the three subsections below.

5.8.1 Providing the next segment

When the segment building subsystem finishes with a full physical segment, it needs
to obtain the next one to write to. Any empty segment will do but locating it in the
segment usage table would be costly. The subsystem therefore maintains a bitmap



44 CHAPTER 5. KERNEL MODULE IMPLEMENTATION OVERVIEW

state flag live data
Reserved LFS USAGE RESERVED
Superblock LFS USAGE SUPERBLOCK
Bad LFS USAGE BAD SEG
Empty LFS USAGE EMPTY SEG
Used LFS USAGE REGULAR > 0
Possibly free LFS USAGE REGULAR = 0

Table 5.4: Relationship between a segment category, flags and live data counters
in a segment summary.

free seg map in the ifile info9. This bitmap contains exactly one bit for each segment
which is set if and only if the corresponding segment can be immediately overwritten.
The segment building subsystem requests segments by calling usage get seg(). This
function simply finds a set bit in the bitmap, clears it and returns the corresponding
segment number. The function may block in the unlikely case there is no segment
available. In that case, a number of BIOs must be under way and their completion
will make some segments available and wake up the sleeping process.

5.8.2 Segment writeouts

A segment summary must be updated whenever an entity stored within it dies. When-
ever the segment building subsystem moves an entity from a segment elsewhere, a
truncate operation frees a block or an inode is deleted, usage writeout block() or
usage writeout inode() is called. Both these functions internally call a common rou-
tine usage writeout() which updates the segment usage table and sends a message
to the user space garbage collector so that it can also update its internal state (see
section 5.10). Because this operation usually informs the segment management some
data have been written out of the segment elsewhere, it is referred to as a segment
writeout.

5.8.3 Safe reclaiming

Reusing a segment immediately after the last segment writeout indicated all data in
the segment are dead can lead to data loss. Consider the following situation. The
segment building code has issued that last writeout and initiated a BIO writing the
updated data to a different spot on the disk. If the system crashes before the current
partial segment is completely finished, the data cannot be recovered from the new
position because the roll forward utility cannot handle unfinished partial segments. If
the old segment was meanwhile reused, the data in question could be lost.

This is the reason for distinguishing the possibly free segments from empty ones
explained earlier in this section. When actual usage of a segment reaches zero,
the segment is put into free seg list in ifile info together with a unique number
free counter. Whenever the segment building finishes a segment, it queries the cur-
rent value of this counter by calling usage get free counter() and stores it alongside
the last BIO of this segment. The completion handler then passes this value back to
segment management subsystem by invoking usage disk sync(). Because this func-
tion is therefore called in the interrupt context and a mutex must be acquired when
manipulating the free segment queue, it only stores the passed counter. Later on,
lfs update free segment() is called at various places when it is safe to block on a
mutex. This function processes free seg list and marks those segments that conform
to all three following criteria as empty :

1. The free counter stored with the segment must be smaller or equal to the one
passed by the last invocation of usage disk sync(). This effectively prevents
the problem described above from happening because all last BIOs of segments

9The superblock info contains a pointer to this structure
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are submitted as write barriers and so their successful completion guarantees a
partial segment has been written to the disk.

2. The segment counter (the one described in the section 4.7) must be smaller
than then segment counter of the last sync segment. This ensures that segments
younger than the last sync are never reclaimed because doing so would break
the chain of segments (see figure 4.6) the roll forward utility relies on. The
figure 5.10 contains an example of what could happen if this condition was not
enforced.

3. The segment counter must be greater than the last segment of the snapshot, if
there is an active one because it contains data that are still accessible by the
snapshot. Such segments are moved to the snap delayed list and are marked
as empty when the snapshot is umounted.

Figure 5.10: Keeping segment chain after sync. a) Segments written after sync
are chained by pointers stored in their summaries and their segment counters
follow immediately one after another. b) All data within the third segment die
either because they are deleted or moved to the fifth one. If we allowed the
third segment to be reused at this point, this could lead to situation c) where a
number of segments are either unusable or inaccessible by the roll forward utility.
The sixth segment cannot be used because its segment counter indicates it does
not immediately follow the second one while the fourth and fifth segments are
not even in the sync chain any more.

Points two and three above mean that only segments younger than the last snap-
shot segment and older than the first segment after last sync can be reclaimed. This
time interval is called the window. Point one guarantees either the old or the new
copy is on the disk at any time. On the other hand, if the machine crashes before the
next sync, the roll forwarding utility is needed to recover moved data. Please note
that garbage collector may decide to move virtually any data at any time so this does
not apply only to the entities a user has deliberately modified.

When segments are marked as empty all processes that might be blocked waiting
for them are awaken by calling wake up() on the free seg cond queue.

5.8.4 Managing the currently written segment

Occasionally, segment writeouts are issued against the segment that is being written
to at the same time. They are mostly results of truncation of data that have just been
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written to the disk but sometimes even the same block is written to the same partial
segment multiple times. Because the amount of live data stored in the segment usage
table is set after the whole partial segment is written, this could cause the usage of the
segment to become negative, confusing both segment manager and garbage collector.
In order to prevent this, writeouts from the currently written segment, the so called
working area, are not immediately reflected in the segment usage table but held
aside to be processed once at least a partial segment is finished.

Moreover, when the segment usage of the active segment drops to zero after finish-
ing a partial segment, the segment must not be marked as potentially free. This can
be done only when the whole physical segment is finished and the segment building
code moves on to the next one.

5.9 Syncing thread

In order to prevent situations like the one depicted on figure 5.10 we do not allow
recycling and garbage collection of segments that are younger than the last sync. A
periodic sync ensures that the number of affected segments is always relatively small.
Periodic syncing is done by the lfs-sync thread that repeatedly tests how many new
segments have been written by a log structured file system since the last sync. If
the number has been bigger than a threshold value, a sync is issued. The threshold
value is computed as maximum of ten percent of the currently free segments in the file
system and 10. There is only one such thread in the system that services all currently
mounted LFS instances.

5.10 Garbage collector

We have already stated in section 5.8 that LFS reclaims free space with segment
granularity and that only segments that contain no live data may be reused. In order
to manage disk space effectively, data in underutilized segments must be moved to new
full segments. The process of doing so is often referred to as garbage collection.
Basically, it consists of identifying live data in the underutilized segments and write
it as usual to a new segment.

Because the process of deciding which segments should be garbage collected is
complex and in future we intend to support multiple such algorithms at the same
time, it has been moved to the user space. This chapter considers the kernel module
internals only, details of the user space program can be found in section 7.2. Once this
program determines which segments are to be cleaned, it is again the kernel module’s
job to identify the live data and write them to the current end of the file system log.
The kernel part and the user program communicate through the NETLINK protocol.

5.10.1 Communication protocol

The NETLINK communication interface allows each message to be sent to either one
particular process defined by its pid or a group of processes identified by a group
id. User space garbage collector starts by sending a handshake message to the kernel
which in turn registers to its array of active garbage collectors to which it unicasts
the necessary messages. Unicast is necessary because delivery of each message must
be guaranteed, a feature that is not provided by the multicast infrastructure.

The kernel module can send any of the following messages to the user space col-
lectors (so called info messages):

LFS GC INFO INIT is a reply to a handshake sent by the collector. The message ac-
knowledges the user space program has been registered as a garbage collector
and is going to receive the necessary updates. It also contains the superblock of
the relevant file system.

LFS GC INFO SET contains information about a new segment and its usage.

LFS GC INFO SET PARTIAL informs the collector a new partial segment has been added
to the current segment and the exact numbers that should be added to its usage.
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LFS GC INFO UPDATE provides information about a segment writeout (see section 5.8.2)
along with information how many inodes and blocks have been subtracted from
the usage of the relevant segment.

LFS GC INFO WORK is kernel’s request for a collection. It includes a severity flag which
means there is an imminent shortage of segments and all other processes are
blocked waiting for garbage to be collected and segments freed.

LFS GC INFO WINDOW informs the user space collector that the window has changed (see
section 5.8.3). This essentially means that either a snapshot has been mounted or
umounted or a sync took place. At any moment the garbage collector is allowed
only to request collection of segment older than the last sync and younger than
the snapshot, if mounted. The reasons for such requirements are also presented
in section 5.8.3.

LFS GC INFO REJECT is generated if the garbage collector requested collection of a
segment outside of the collection window. This happens very rarely when the
newest window update has not been yet processed by the application.

LFS GC INFO PING is sent once a while if no other messages are issued. The garbage
collector is expected to reply with LFS GC REQUEST ANSWER and may actually also
request some collecting because this message means the file system is not being
modified at the moment and it seems to be a good time to defragment the disk
a little.

LFS GC INFO END is sent when the file system instance is being umounted. The user
space garbage collector should terminate.

Below is an overview of all message types that the user space program can send to
the kernel module (so called requests):

LFS GC REQUEST REGISTER is a handshake message that initiates the communication
channel. Kernel registers this garbage collector and responds with initial infor-
mation and usages of all segments that contain any live data.

LFS GC REQUEST COLLECT is a request to collect a specified segment.

LFS GC REQUEST ANSWER is a reply to the LFS GC INFO PING message described above.

5.10.2 Sending messages to the user space

We have already said that all messages must be reliably delivered to the user space.
Reliable delivery, however, is always blocking. That is why messages are sent to the
user space by a special thread called gc-thread. Every mounted file system has an
outgoing message queue called work queue10 associated with it. New messages are
usually added to it using the function schedule message().

LFS GC INFO WORK and LFS GC INFO PING messages may take a considerable amount
of time to process because the garbage collector may issue collecting requests which
are then honored in kernel but within its context. Even more importantly, processing
those requests inevitably generates a fairly big amount of new info messages which
can lead to an uncontrollable growth of the outgoing message queue. Furthermore,
if the user space decided which segment should be cleaned before it processed all
information about segment usage changes, it would be basing its actions on potentially
outdated data. In order to avoid these two unpleasant situations, various info messages
have different priorities and are inserted into the work queue accordingly. Generally
speaking, messages updating the internal state of the user space garbage collector take
precedence over those that might result into more collection. All priorities are listed
in table 5.5.

5.10.3 Processing cleaner requests

All requests from the user space are immediately processed by the NETLINK event
handler gc request() within the context of the cleaner. Registering a new garbage

10This queue used to contain collect requests as well, hence its name. However, currently
it stores outgoing messages only.
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Priority Type
3 LFS GC INFO REJECT
4 LFS GC INFO SET
4 LFS GC INFO SET PARTIAL
4 LFS GC INFO UPDATE
4 LFS GC INFO WINDOW
5 LFS GC INFO WORK
5 LFS GC INFO PING

Table 5.5: Info message priorities. Smaller numbers take precedence over the
bigger ones.

collector and processing the ping answers is fairly straightforward and therefore we
will deal only with requests for a specific segment collection which are handled by
gc request collect() which in turn calls the function gc collector() to do most of
the work.

This function proceeds in several steps. First, it checks the segment can actually
be collected and is not empty. Secondly, it reads and checks the segment summary.
Finally, it invokes collect data() and collect inodes() to collect blocks and inodes
respectively. These functions determine the liveness of all blocks and inodes stored
in the segment. Each live block is read, marked dirty and the associated mapping
is placed into the garbage queue so that the segment building code can write it
to a new location (see section 5.3.10). Each live inode has its LFS II COLLECTED BIT

flag set and is also added to the same queue. Note the inodes are not marked dirty
because otherwise the Linux kernel might try to write it back to the disk itself which
might occasionally lead to the inode being written twice. The purpose of the flag is
also to prevent this from happening, it is cleared each time an inode is planned for
writeback. Whenever an inode or a block is put into the queue, the reference of the
inode is incremented so that it is never deallocated until the reference is decremented
again by the segment building code after it has written the entity to a new location.

Finally, gc request collect() calls the function lfs write gc stuff() (see sec-
tion 5.3.10) so that the items stored in the garbage queue are immediately written.

5.11 Directories

The traditional layout of directories as a table of entries which grows when entries
are added is deprecated. The drawback of the old approach is that the complexity
of directory operations is linear. This results in a quadratic cost of an operation
performed on all entries within a directory.

Modern filesystems adopted methods which allow to access an entry with a con-
stant (or almost constant) cost. Most of the current file systems implementors decided
to use B+Tree (JFS, NTFS, HPFS, XFS), B*Tree (HFS Plus) or some sort of hash
tables (ZFS - extensible hash table).

Not surprisingly also the EXT3 developers had to deal with this trend and imple-
mented an indexed directory structure called HTREE (as described in [7]) which is
backward compatible with the traditional EXT2 layout, but offers the main features
of an indexed directory. Moreover in case of a file system damage, there is a fall-back
to the non-indexed operations.

For our LFS project we decided to uses a the HTREE with certain changes to
its structure since we are not bound to the backward compatibility. HTREE is in
fact a variation of a B+Tree, all data are in leaf blocks and all leafs are in the same
depth. This chapter describes our indexed-directory implementation as well as discuss
all major design decisions we took.
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struct l f s d i r e n t r y {
l f s h a s h t hash ;

u32 inode ;
u32 i v e r ;
u16 en t r y l e n ;
u8 name len ;
u8 f i l e t y p e ;

char name [LFS NAME LEN ] ;
} a t t r i b u t e ( ( packed ) ) ;

Figure 5.11: Directory entry structure

5.11.1 Overview

As mentioned before our intention is to implement a directory layout that has an
almost constant cost of file operations. Usually a file system with indexed directory
structure handles very small directories in a different (unindexed) way avoiding the
index overhead until the number of directory entries exceeds some threshold. JFS
stores up to 8 entries (excluding . and ..) in the inode without need of an additional
data block whereas the EXT3 uses EXT2 layout for a single block directories.

In our design (inspired by the EXT3 HTREE [7]) we also begins with a single block
directory without any indexing. There is a marker in the inode which tells whether
the directory is indexed or not. If a new entry is being created, but there is no free
space in the current data block, that block is split, data are equally copied to two new
data blocks and an index block (index root) is created. The data blocks become leaves
of the newly created index tree.

Since the index tree was introduced, each entry operation use it to resolve the leaf
block in which the operation takes place. During the life of a directory, new entries
are added or removed. Whenever a leaf block if full but an operation resolved it as a
target for addition of a new entry, a block is split and an index which points to this
block is added to an index block on an upper level of the index tree.

Initially a single (root) index block is created. Once this block is filled up with
indices, it must be split and a new root is created. In such a process a single directory
data block evolves into a multilevel index tree.

Last but not least it is worth to mention that in contrary to EXT3, LFS uses
pages in the page cache when manipulating with directories instead of outdated buffers
(buffered IO) which makes the code more readable and maintainable.

The following sections describe in detail all main features of our implementation.
In Section 5.11.2 the on-disk structures are presented, in Section 5.11.4 we describe how
the target data block is resolved and how an entry is looked up, Section 5.11.5 covers
how an entry is added to a directory and how the index tree is created, Section 5.11.6
shows how entries are removed, Section 5.11.8 deals with journalling support for di-
rectory operations and finally Section 5.11.9 shows how a we handle directory read by
an userspace application.

5.11.2 Structures

An on-disk directory is represented by so-called data blocks or leaf blocks which con-
tain the directory entries and index blocks which (if used) keeps the structure of the
directory index tree.

A directory entry (or dentry) is defined as struct lfs dir entry (see Figure 5.11).
As you can see, the name is limited to LFS NAME LEN which is defined in include/linux/lfs fs.h

as 256. Since we include also the trailing ’\0’ the actual name length is limited to
255 characters. Actually the size of the name array is for userspace use (e.g. mkfs,
fsck, dump fs) and to denote the name length limit, but the size of the structure is
not fixed. The length of the name is variable and is stored in the name len item and
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struct l f s d i r i n d e x e n t r y {
l f s h a s h t hash va lue ;
l f s a d d r t b lock no ;

} a t t r i b u t e ( ( packed ) ) ;

Figure 5.12: Index block entry structure - index blocks contain number of such
entries which maps hash values to block numbers

struct l f s d i r i n d e x b l o c k {
u32 entry count ;
u32 e n t r i e s u s e d ;
u64 padding ;

struct l f s d i r i n d e x e n t r y entry [ ] ;
} a t t r i b u t e ( ( packed ) ) ;

Figure 5.13: Index block structure - each index blocks has a header which
determines how many indices can fit in this block and how many of them are
used at the moment

is also determined by the trailing ’\0’. The name array is rather used as a pointer for
accessing the entry name. The actual size of a dentry is stored in the entry len.

Each leaf block contains at least one directory record and it spans over the whole
data block. This shows that a dentry does not contain only its data, but can include
free space as well. Moreover, for alignment reasons we always round the size to 4 byte
boundary so up to 3 bytes might be wasted. Since the modern architectures have very
slow access to any unaligned data, this is worth the cost.

When a new directory is created a single data block of this empty directory includes
two dentries, for ’.’ and ’..’. The latter is extended to cover the entire free space.
As new entries are created and others are deleted, dentries are chopped into pieces of
requested size or merged to avoid partitioning of the data block. This is covered in
more detail by following sections.

As stated before, once there are too many dentries to fit in a single directory block,
an index-tree structure is created. Each index block contains a number of indices
(Figure 5.12) that point either to another index-block (Figure 5.13) or directly to a
leaf (data) block. Details of the index-tree is presented in the following Section 5.11.3.

5.11.3 Index tree

As described in [7], HTREE leaves are all on the same level. Therefore the cost of
resolving a block where an entry should be located, is the same for all dentries in a
directory. Depth of the tree is kept in the directory’s inode and helps to stop traversal
from a root to the leaves. See Figure 5.14 for an index-tree example.

To be able to lookup dentries we assign a hash to each dentry. The hash is based
on the entry’s name. We opted for a 64-bit hash in order to minimize the amount
of hash collisions and the length of hash collision chains. The hash function itself is
adopted from the EXT3 filesystem.

Each index block contains a number of indices which map hash codes to a blocks
which are either leaf blocks (a single block subtree) or a root index-block of a index-
subtree. Only dentries with hash-code greater or equal to the one in the index ought
to be found in that subtree. We keep the indices within an index block sorted in the
ascending order of hash-codes. This allows us to use a binary search algorithm to
lookup the right index. Because the hash in the index is lower bound for the hash-code
within the subtree it points to, and since the same condition holds for the successive
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Figure 5.14: Index tree with two levels of indexing. Dotted lines point to blocks
which are not show on this figure

index, the next hash can be used as an upper bound for the range of indices which can
be found in an index-subtree. As a result, if the dentry is not found in this subtree,
the dentry does not exist in this directory at all. There is a single exception to this
rule.

Because of the hash-collisions, we cannot be sure that all indices which belong to
the same hash-collision chain, fits in the same block. We use a single bit in the index
hash field to denote that if a dentry is not found in this subtree, the lookup should
continue in the next one (see Figure 5.15). In a case of a very long collision chain, it
can span several index-subtrees. Perhaps because of the 64bit (63bit since one bit is
used for marking the collisions) hash size and the good design of the hash function, we
never encountered a collision-chain long enough to span more than one block, though.

Index tree limits

The tree depth is limited to 3 (2 index levels). This gives indices per block2 leaf
blocks, for default settings it is equal to (4096/16 − 1)2 = 65025. This gives approx.
254MiB of leaf blocks. If we assume that each leaf block is 75% full and holds about
200 entries (see [7]), it results in approx. 13 million of entries per directory. The
theoretical upper bound for maximal size entries is 993814 of entries. It is unlikely
that all leaf blocks are full as well as it is unlikely that all entries have the maximal
name length.
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Figure 5.15: Hash collision chain spanning multiple blocks and multiple index
levels. Every block but the last in the hash collision chain is marked with a
collision bit. There is a collision chain on each index level. It helps to span
collision chain across multiple index blocks. Dotted lines point to leaf blocks.

There is no practical objection to adding a third index level which would result in
more then 3 billion of entries if anyone ever needs such a huge directories.

Compared to EXT3, we support less entries per directory because of the 64 bit
hash and offsets. On the other hand this results in very short hash chains which do
not occur very often at all.

5.11.4 Resolve operation

Resolving a hash-code to a block is the most frequently executed operation in the whole
directory code. The core of this operations is resolve leaf blk num() function. In
case of a single block directory, its code is trivial. The only one block is returned. The
more interesting job is done in resolve leaf blk num idx() which searches the index
tree.

resolve leaf blk num idx() is recursive. We are sure that the depth of the re-
cursion is not larger than the depth of the index-tree. As mentioned before, the depth
of index-tree is limited to 3 (or some other small number in the future), so the depth
of the recursion is as well. The small depth of the recursion is why we use this rather
than any stack-based non-recursive workaround.

This function can perform several slightly different tasks. The basic use is to
lookup the leaf block with the first occurrence of a given hash. If a hash collision was
detected, this function can be called in a loop with the last returned block passed in,
so the function looks up the next block in a hash collision chain until the end of the
collision is found. If requested, it can return the index block that points to the leaf
block that was returned. This is useful, e.g. if we want to remove an empty leaf block
and mark it in the index tree. This feature is not used though. Of course, this function
can also return an IO error.

Lookup

Resolving a hash to a leaf block is only part of the lfs lookup() inode operation since
resolve always returns a blocks where the requested hash might be, unless an IO error
occurred. To be sure that an dentry is present in the returned block, a traditional
linear search must inspect that leaf block.

The search must be linear because dentries are not sorted within a leaf block. We
decidedi so because of the high cost of keeping dentries ordered (See Section 5.11.5
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on how dentries are added). Instead, we store the hash code of each dentry together
with the dentry name in each dentry record. Therefore we do not have to do a string
comparison if hash does not match. On the other hand, if the hash in the dentry is
equal to the hash-code of the looked up record, we must compare the name string to
be sure that we found the correct dentry and not just a dentry with the same hash in
a collision chain. For details see the lfs name to inode() which walks the leaf block
and lfs name match() which does the string comparison.

5.11.5 Adding directory entries

Adding new directory entries is the most complex directory operation. First, the target
leaf block must be found. If there is no space for a new dentry, the block must split and
a new index is inserted in the upper index block. This may lead to a cascade of index
block splits which can exceed the index-tree limits (as presented in Section 5.11.3 on
page 51). This is reported to the user application as -ENOMEM We will now describe in
detail all actions necessary to add a new directory entry.

Adding a dentry to a leaf block

Once a target block is resolved (as showed in Section 5.11.4) the insert dentry()

attempts to insert the dentry. We use the word attempts because there is no way to
predict whether the insert operation will be successful or not.

The function starts at the beginning of the data block and linearly walks the list
of all dentries present in the block until it finds a suitable location for the new entry
or until the end of the block is reached.

As stated in Section 5.11.2 on page 50, the whole block is covered by struct

lfs dir entry structures. Each dentry structure points to its successor with its
entry len field, creating a linked list within the data block. All unused space is
included in dentries. Therefore suitable place for a new dentry record can be found in

• unused dentry - dentry which inode is set to LFS INODE UNUSED 11. Such an
unused entry must be so large enough that the new dentry can fit in.

• used dentry - live record which occupies more space than required. If the unused
space within the dentry is large enough to fit in the new dentry, the current
record is truncated to the necessary size and a new dentry is placed in the
unused space. If some more unused space is left, it is included in the newly
created record. See Fig 5.16

Because a directory leaf block becomes fragmented as new entries are added and
removed, it might happen that there is enough unused space in the block, but no
chunk is large enough. Since we want to prevent unnecessary block splitting, we
defragment such blocks.

When walking the linear list of all dentry records, insert dentry() counts the
number of unused bytes. Because no suitable space was found, the end of the list is
reached and all space is accounted. If the space i large enough for the new dentry,
block defragment() is called. Once the block has been defragmented, we try to add
the new entry again. This time success is guaranteed.

block defragment() just pushes unused space to successive records. It is finally
gathered in a single empty dentry record at the end of the block. For details see
Figure 5.17 and the code in src/dir.c

Building the index tree

As stated before, each newly created directory has a single leaf block. When adding
a new dentry in this block (as described before), sooner or later it will happen that
insert dentry() returns -ENOMEM because there would not be enough space even after
defragmentation (defragmentation is not executed because it would be useless).

11this macro, as defined in include/linux/lfs fs.h, is equal to 0 since the glibc library is
biased to EXT2 and expects unused inodes to be set to 0.



54 CHAPTER 5. KERNEL MODULE IMPLEMENTATION OVERVIEW

Figure 5.16: If there is unused space in a dentry record which can be reused for
a new dentry (a), the record is split and the new entry is inserted (b) The thick
arrow shows how the original dentry is changed to point to the newly inserted
one

In this case the single leaf block is split in two and a new index root block is
allocated. Approximately half of all dentries in the original block are copied to each
of the new leaf blocks and indices of both blocks are inserted in the index root (See
Figure 5.18). Although copying data from one block to another is expensive, we
benefit at least that the block is defragmented while data are copied. copy half()

copies dentries from the original block to the new one and deactivates the original
dentries by setting their inodes to LFS INODE UNUSED LE32. Unfortunately this cannot
be done simultaneously because of page locking. In case of a different block and page
size (note that block size is always less than or equal PAGE CACHE SIZE), we might
access blocks which resides in the same page. This is exactly the case when splitting
a single block directory as at least one of the new blocks is allocated in the same page
as the block that is being split. Therefore data are copied first and the original block
must be walked once again to deactivate the copied dentries.

If an index tree already exists and a new dentry is being added there are basically
three scenarios :

• success

– target block is looked up, there is space enough and the new dentry is
added

• target leaf block is full

– in the simpler case the target block is split and there is a free slot in the
parent index block to add a new index which points to a new leaf block.

– the parent index block is full and must be split as well. This is accomplished
in a similar manner to splitting of a leaf block. Inserting a new index to
the parent index block may lead to a cascade effect until the root is split
too.
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Figure 5.17: If there is enough space for a new dentry in a leaf block, but
the space is fragmented in small chunks (a), the block is defragmented and all
unused space is gathered to create a new large unused area (b). The gray areas
stand for unused space, i.e. space to be collected

Figure 5.18: If there is not enough space in the single leaf block (a) a new index
root block and a new leaf block are created, data are divide among both blocks
and a new entry is added (b). The numbers in braces denote the block numbers
within the directory file. Note that the original leaf is overwritten by the index
root.

Splitting a leaf block

When splitting a leaf block, there is a special case of a single block directory (first
split), which is a has no index block. It is just a single leaf block and must be handled
accordingly. The difference is that data from the original block must be moved to
another location within the file because index root must be always in the first block
of the directory, so we can easily find it. In any other case the block that is being
split is not moved, approximately half of its entries are copied to another block and
the original block is defragmented. The core of this operation is implemented in
split leaf block() function.

The strategy for splitting a leaf block is fairly simple. Function map create()

reads the whole block and creates a so-called map of that block. The map contains an
address of each dentry in the block together with its hash. Here we benefit from the
fact that the hash is stored in each dentry so that we do not have to calculate it. After
the map is created, it is sorted in map sort() in ascending order of hash codes. This is
necessary because of the fact that hash of records which are about to be copied to the
new block must be all greater or equal than some value which is stored in a new index.
The upper half of the hash codes is copied to its new location using copy half().

This method proved to work fine. It assures that there will be space enough for
a new entry except in certain corner cases, where it is not technically possible, e.g.,
in a case of smallest block size of 512 bytes if there is already a dentry with maximal
name length of 256 characters. Adding a new maximal size dentry is not possible. In
such a case -ENOSPC is returned. We do not treat this as a significant problem since it
is the administrator’s task to create a filesystem that suites his needs.

Of course, there are some obvious improvements to this method that are considered
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future work. For instance :

• Copying approximately so many dentries that half of the space in the original
block is freed, instead of copying half of all dentries. This will help keep the
index tree more balanced

• Trying to avoid splitting a hash collision chain would keep the cost of the resolve
operation low.

Splitting an index block

After a leaf block is split, the index which points to this block must be placed in an
index block. This operation, performed by insert index into block(), called from
insert new index(), is fairly simple if there is a free slot in the index block. To be
able do check it quickly, each index block has a header (See Figure 5.13) that stores
how many slots are in this block and how many are actually used.

As stated before, all entries in an index block are ordered, so we use a binary search
to find the position where the new index should be inserted. Function insert index shift()

shifts the rest of the indices and places the index at the freed position. The whole
process is illustrated on Figure 5.19

Figure 5.19: When inserting a new index (index 2) to an index block (a), first
the new position is looked up and freed by shifting the rest of the indices (b).
Then the index is placed to its position (c)

The task of insert new index() is to handle a cascaded split. As stated before,
it might happen that there is no free slot left so that the index block must split.
Call to split idx block() returns the index of the newly created index block and
a recursive call to insert new index() inserts it to the upper index block. Perhaps
this index block must also be split and so on. The recursion continues until the index
is successfully stored or until the index root is split and a new index-root is created.
There is always space enough and the recursion stops. Figure 5.20 shows such a
situation.

In Section 5.11.4 we mentioned that we use recursion for traversing the index-tree
when resolving hash-code to a leaf block. Maximal depth of the index tree limits the
depth of this recursion (See limits in Section 5.11.3 on page 51). The same condition
holds for the bottom-up recursion of the cascaded split.

Because we need new blocks in the cascaded split, we must be sure that we do
not leave the directory structure in an inconsistent state if we run out of memory.
Therefore insert new index probe() tests to which extent the directory will be split
and tells how many blocks to preallocate. Last but not least, it detects whether
the maximal depth of the directory is going to be exceeded and if so returns error
code -ENOSPC. This signals that there is currently no space in this directory for the
entry. It does not mean that another (different) entry cannot be inserted and by
doing so, the index-root must not be split. Unfortunately, this information is opaque
to the userspace application. References to the preallocated blocks are passed to the
splitting-part of the directory-code so that no dangerous allocation is necessary. If
preallocating of necessary number of blocks fails, so does inserting of a new entry.
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Figure 5.20: If a new dentry is to be inserted into the leaf block 1 as presented
on (a), that block must be split in two blocks block 1/0 and block 1/1 and
a new index must be placed in the index root, which is full. Therefore a new
index root is created and the original one is split in two index blocks (b). Gray
zones stand for unused space, whereas newly added records are highlighted by
thick borders.

5.11.6 Removing directory entries

Comparing to adding a new directory entry, removing an old one is significantly sim-
pler. We opted for solution which is not shrinking the size of the directory since most
entries are removed not from last block in the directory file (and so we could truncate
the directory once the last block is empty) but rather from random blocks within the
file.

To remove or delete an entry, it must be looked up as described in Section 5.11.4.
Subsequently, the entry is marked as unused by setting its inode item to LFS INODE UNUSED.
Doing only this would result in fragmentation of the directory leaf block. If there are
unused neighbors, we merge them with the newly released entry to create a larger
unused chunk within a block. This chunk can be more easily reused by following ad-
d/create directory operations. The core of the remove operation is implemented in
lfs remove entry(). This function is reused in all directory operations that remove
entries from a directory, which include

• lfs unlink() - removes an entry which points to a non-directory file

• lfs rmdir() - removes an entry which points to a directory

• lfs rename() - removes an entry from its originally parent directory and creates
a new one in another directory that points to the same inode. It also removes
the destination entry if it exists and it is not a non-empty directory.

The described method of removing directory entries has drawbacks too. The most
obvious is that we do not shrink the directory’s size if some leaf blocks are emptied.
This can result in a huge directory (in terms of used bytes on disk) that contains
only several entries, which might fit in a single block directory. As well known and
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extensively used filesystems do not deal with this problem either, we consider this as a
minor issue. It is unlikely that applications that create a large number of entries will
not remove the whole directory once its entries are not used anymore.

Another problem is that the index-tree structure is more or less static. It means
that once a tree is created and indices are distributed among index-blocks the only
operation that can possibly change such a distribution is adding new entries (and
splitting tree nodes). Removing entries does not affect the tree structure at all. Here
we highly benefit from the well designed hash function12. It distributes entries very
well so even a different work-scheme on previously emptied directory keeps the usage
of both index and leaf blocks balanced.

We considered an option of releasing leaf blocks. The problem is that the Linux
VFS layer makes releasing blocks within a file difficult. Another space optimization
would be merging and releasing index blocks. This would affect the overall performance
of directory operations significantly. In our opinion this might be a task for a Garbage
collector or similar process which can compact directories once the system is idle.

Both extensions remain future work.

5.11.7 Symbolik links

We support fast and slow symbolic links in the EXT2 fashion. Fast symbolic links
store the destination path in the the struct lfs inode area which is reserved for
block addresses. Since we use 64 bit addresses, there is space for up to 192 characters.
If the path is longer, it is stored as a slow symbolic link in a single data block.

5.11.8 Journalling

While our filesystem works as a log, we need journaling for directory operations. The
reason is that we cannot be sure, which data are going to be written to the disk and
when. Moreover the disk itself can reorder writes of the data. If the system crashes,
roll-forward needs to know which operations were performed since the last sync to be
able to remove entries if inodes are missing.

Before a directory operation starts changing data blocks, it tells the journalling
subsystem (See Section 5.12) which operation will change the directory. The following
operations, defined in include/linux/lfs dir.h are journaled :

LFS JOURNAL OP CREATE
LFS JOURNAL OP MKDIR
LFS JOURNAL OP MKNOD
LFS JOURNAL OP LINK
LFS JOURNAL OP UNLINK
LFS JOURNAL OP RMDIR
LFS JOURNAL OP RENAME
LFS JOURNAL OP SYMLINK

Journal is divided in so-called journal lines (or jlines) of variable length. The length
depends on the operation that is journaled. In general, each line has a header which
describes the operation and its variable parameters. Figure 5.21 present the header of
the on-disk journal line. The header is followed by one or two strings depending on
how many names are used for each operation.

We can divide all operations into three groups :

• simple - all operations which involve only a directory and a single entry. These
operations use only one string in the journal line.
create, mkdir, mknod, link, unlink and rmdir

• rename - this operation does not only change the location of an entry in the
directory tree, often it changes the name as well. Both the old and new name
must be journaled

12copied from EXT3
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struct j l i n e {
u16 opcode ;
u16 j l i n e l e n ;
u32 inode [ 3 ] ;
u32 inode ve r [ 3 ] ;
u16 name len [ 2 ] ;

} a t t r i b u t e ( ( packed ) ) ;

Figure 5.21: Journal line on disk representation

• symlink - this operation needs to log the name of the new symlink as well as its
target

Operation rename needs special care if the destination already exists. The expected
behavior is that unless the target is a non-empty directory, the target is removed and
substituted by the moved entry. Such a situation needs to journal both rmdir/unlink
and rename.

Core of the directory journalling is lfs journal dir writeout() which creates
the journal line and passes it to the journalling subsystem. Extra care must be taken
if a journal line spans across a page border. There is a state machine inside the
lfs journal dir writeout() which fills the actual page and asks for another page.

5.11.9 Readdir

The readdir operation is used for sequential reading of all directory entries. It is not
directly exported to userspace even though there is a readdir() function in standard
libraries. Its purpose is to return a single entry per call. Asking the kernel to return
a single entry each time is not efficient since crossing kernel-userspace boundary is
expensive. Therefore the Linux kernel exports the getdents() syscall which gets a
buffer from userspace an fills it with as many entries as possible and let the glibc
implementation of getdents() deal with system specific differences of how to get data
to userspace buffers. Glibc’s readdir() returns a single entry from that buffer. We
will now discuss how the directory entries are read by LFS and how they are returned
to userspace.

Like the rest of the Linux VFS, readdir() expects behavior similar to EXT2,
therefore our implementation is not straight forward but deals with similar problems
as EXT3 with indexed directories. There are certain differences.

The main problem is that file position in the traditional meaning does not make
sense. If we were sequentially walking a directory that is being changed by another
process, we might see some entries more then once. The reason is that some entries
could have been copied to another block because of an index-tree split. Even if we
were able to skip index blocks (which do not contain any entries) we cannot determine
if some entry was already returned or not.

We compared behaviour of LFS and EXT3 on a directory with 500.000 entries.
We used an old glibc’s implementation of readdir() which performes more then 4.000
seeks. LFS returns two duplicities whereas EXT3 only one.

In our approach, we substitute the real file position by the hash value of the actual
directory entry. This value expresses where such an entry can be found. If the directory
is walked in the hash order, it is simple to tell whether the given entry was already
sent to a user application or not by comparing its hash value with the actual one.

Another issue is to determine where to continue reading when readdir() is called.
There are two situations :

1. As stated before, each call to readdir() returns just as many entries as many
fit in the given buffer. To read the whole directory, a user application issues
several calls. In each invocation we need to know where to continue.
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2. Just as it is possible to seek in a regular file, it is also possible to seek 13 in a
directory. After seeking, readdir should continue from the new position.

Hash as a file position

As described before, we use a hash instead of a real file position. This allows us to
determine position in the sequence of entries sorted by hash codes. The drawback is
that this is not unique since there are entries with the same hash code in case of a
hash collision. So it is not possible to tell exactly which entry is referenced.

To reduce the probability of hash collisions we opted for a 64 bit hash. It is prob-
lematic to return such a large file position in readdir(). Even though all related
kernel functions use loff t which is a 64 bit integer type, glibc expects 32 bits only.
Therefore we return only the most significant bits. As a result seeking is not pre-
cise. But as there might be many concurrent writer 14 the application cannot count
on that the directory is in the same state all the time, unless some other means of
synchronization or mutual exclusion are used.

Stateful readdir

As described earlier, an application calls readdir() as long as there are some data
to be returned. Each time, as many as possible entries are returned. Only EOF
is signaled by returning no entriy. We need to remember where to continue after
being called again. For earlier mentioned reasons, file position (e.g., as used in EXT2)
is not enough since this information is not accurate enough. Therefore we attach
a private data structure to the struct file structure (See Figure 5.22), where we
keep all important data between successive readdir() invocations. It includes last file
position (to be able to detect seeking), current hash to be processed, entries of the
block which is being processed and a list of all leaf blocks. The last two items are
described in more detail later on.

Because of the data stored in the private info structure, we need to detect if the
application changed the actual file position (seek, etc.). To do so, we keep the last file
position just before returning from the previous readdir() call. If seek is detected,
the private data structure must be reset and refilled accordingly.

Similar measures are taken if a directory is changed while being read. We wish to
return the most recent state of the directory, but this is not always possible. If a new
entry with a lower hash than the current is added, this entry is not to be returned
without seeking or rewinding that directory. Returning such an entry would violate
the hash order. Moreover adding new entries to a directory may split some blocks and
some of the entries wouldn’t be returned at all. For this reason, we need to reload the
private info if the directory changes. We keep an internal version of the directory. If
it has changed since the directory was opened or since the private info was reloaded,
it is time to reload it again.

Returning entries in a hash order

As stated before, we decided to return all entries in hash order rather than in file
position order. The directory is partially ordered because of the index-tree structure.
As described in Section 5.11.4 records in index blocks are ordered, contrary to leaf
blocks which lack any sense of order. As a result we read the leaf blocks in the hash
order and sort the content of a block when the block is being processed.

Leaf block list

When readdir() is called for the first time, no private info is attached to the directory
yet, we create a list of all directory leaf blocks. There are several reason to do this :

13Seeking is limited to usage of telldir(), seekdir(), rewinddir() and seek() with
SEEK SET only.

14Access to a directory is exclusive, but readdir() calls can be interleaved with calls by
other applications that change content of the directory.
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struct d i r p r i v a t e {
l o f f t l a s t p o s ;
l f s h a s h t min hash ;
l f s h a s h t max hash ;
l f s h a s h t curr hash ;
l f s h a s h t next b lock hash ;
struct rb roo t root ;
struct rb node ∗ curr node ;
struct fname ∗ cu r r cha in ;
struct i d x l i s t ∗ i d x l i s t ;

} ;

Figure 5.22: Readdir private info structure

• It is expected that the whole directory will be read. Our sulution walks the
index-tree once instead of looking up each leaf block separately.

• It is necessary to know the minimal hash in the next block to know where to
continue after the current block is finished. It is trivial to continue with the
next block in the list. Without such a list we would have to read possible two
index blocks at once to get this information.

• If we do not want to output the most recent content of the directory while the
directory is changed, such a list is a semi-snapshot. All blocks in the list are
valid all the time, the order of the blocks never changes. The only change is that
some of entries could have been moved out to other blocks if a split occurred.

The list of block indices is created in fill idx list() which walks the index-tree
in depth-first-search and adds an index of a leaf block to the list. The list itself consists
of a linked list of pages. Each page is allocated in alloc idx list item() Each page
contains a header (See Figure 5.23) and an array of indices. When adding a index of
a block to the list, we call get dir block() to get the block to memory.

This list is attached to the directory’s private structure. As readdir() is called, the
first item in the list is removed and processed. After a block is finished, put dir block()

is called to release a reference to the block. Once all indices are removed from a page,
the page is released in free idx list() too. free idx list() releases all items on
the list. In most case just a single-item list is passed to this function, unless a reset of
the whole private structure occurs

struct i d x l i s t {
int d i r b l o c k c n t ;
int d i r b l o c k u s ed ;
int index ;
struct i d x l i s t ∗ next ;
struct i d x d i r b l o c k d i r b l o c k [ ] ;

} ;

Figure 5.23: Item of a leaf block index list

Sorting a leaf block

We need to sort all entries of a block in hash order. We adopted an EXT3-like ap-
proach. Its core is a red-black tree (rb-tree) where each node represents a single hash
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value and its collision chain. We use the generic rb-tree implementation from the
Linux kernel. The rb-tree is sorted when new nodes are inserted.

Initially the rb-tree attached to the private info is empty. Everytime the rb-tree
is empty, lfs fill rb tree() is called. It picks up a block from the index list (as
described in previous subsection) and calls block to rb tree() to fill the rb-tree with
data from the leaf block. If there is a collision chain that overflows to another leaf
block, the whole chain is read and inserted into the rb-tree. If in the meantime some
entries were removed from the directory, it might happen that there is an empty block
in the list. That block is skipped.

The rb-tree is reference through the root item of the private data structure.
curr node points to the node which is currently processed and curr chain is the
first item in the hash collision chain which will be processed next. For details see
Figure 5.22 and the src/dir.c source file.

Filling the userspace buffer

The core of readdir() implementation is a loop which calls filldir(). From the
point of view of readdir(), filldir() is a blackbox wrapped in lfs filldir().

The main loop is responsible for setting the current node of the rb-tree. If the
rb-tree is emptied, it is refilled again. In contrary, lfs filldir() processes a single
hash chain. It calls filldir() for each item in the chain and if an error is returned, it
sets the curr chain so next the readdir() can continue from here on. Notice, that the
before mentioned error is not fatal and its only purpose is to signal that the userspace
buffer is full.

Releasing private info

Because we allocate a private data structure that we attach to the directory once the
readdir() is called for the first time, we must be sure that those data are freed by
lfs release dir() file operation once the directory is closed.

5.12 Journaling subsystem

The journaling subsystem can be found in src/journal.c and its purpose is to provide
the directory operations with a means to store jlines (see section 5.11.8) and enable
the segment building subsystem (see section 5.3.5) to flush to disk those of them which
are relevant to the currently written entity. Internally, the subsystem is little more
than a queue of pages, a current page to which new entries are being added and a
counter of jlines to uniquely identify them.

5.12.1 Interface for directory operations

Directory operations start creating jlines by calling lfs journal grab entry(). This
function returns the pointer to the current position in the current page and how much
space there is left in it. If there is no current page a new one is allocated. This function
also locks a mutex so that no journal entries ever interleave and the subsystem state
is protected from race conditions.

Conversely, when a directory operation is done with constructing a jline, it calls
function lfs journal release entry() so that the journaling subsystem can update
its state, in particular the position in the current page and the number of the next jline
and release the mutex. If the current page has been entirely filled by the committed
jline it is queued. Finally, the subsystem checks whether the journal pages take too
much space and if it is so, the segment building code is asked to plan a few of them and
finish a partial segment so that the memory they occupy can be freed (see section 5.3.1).
The function returns the number of the finished jline so that the directory operation
can assign it to corresponding fields of relevant inode infos.

Nevertheless, the jline a directory operation wishes to produce may not fit into the
remaining space in the page. The operation must handle this by splitting it into two
parts so that the first one exactly fits into the rest of the current page and ask for a
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new pointer by calling lfs journal next page() which enqueues the current page and
allocates a new one so that the rest of the jline can be placed into it. This function
keeps the journal mutex locked.

5.12.2 Interface for the segment builder

Whenever the segment building code processes an inode, mapping or even a single
page, it must acquire and plan plan all pages containing jlines with a number that is
less than or equal to the one stored in the inode info. These are obtained by calling
lfs flush inodes journals(). In addition, if there are too many journal pages stored
in the queue, this function passes some of them on to the caller too. The caller then
processes the returned part of the queue and plans it with respect to plan structures,
remaining blocks in the segment and so on.
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Chapter 6

Snapshot

Because lfs stores new copies of data in another place on the disk the implementation
of a snapshot is relatively simple. We must not allow to mark data as FREE that
are dead and in same time used by snapshot. Of course there are problems with
implementing it in Linux and how to reuse most of already written code.

6.1 Implementation

The most simple way of implementing snapshot in Linux appears to be creation of new
file-system type. This file-system has no backing device and during its initialization
it references a host file-system instead. So it can use host file-system’s structures like
lfs sb info without fear that they will be freed.

Snapshot finds its host file-system by an id that is provided in the mount time. It
grabs it with code similar to kernel function grab super(). From that point on the host
file-system cannot be umounted. Even if it is umounted from all of its mount-points
it is still mounted in kernel. After the snapshot is umounted deactivate super() is
called. It drops active reference to the host file-system.

When mounting a snapshot we must sync the host file-system and remember the
last segment’s segment counter and address of the ifile inode. Snapshot creates its
own ifile inode with the same address and since it is read-only, it never changes.

The last thing the snapshot does is stopping garbage collecting of any segments
that were not empty before the last sync before the snapshot was taken. Message
LFS GC INFO WINDOW with last segment counter is sent to the garbage collecting pro-
cess. It is not an error to collect data, which were created before the snapshot. Since
these segments are not freed while the snapshot is mounted, such an operation would
only waste space and not free any segment.

All free space tracking data are part of struct free space defined in free-space.h.

6.2 Free segments tracking

We test if a snapshot is mounted in lfs update free segs() . If so, we test segment counter

if segment was written out before or after the snapshot was taken. If it happened after,
the segment is marked as FREE as usually. Otherwise it is enqueued into the struct

lfs sb info::snap delayed queue and freed after the snapshot is umounted.
There is also a special atomic value struct lfs sb info::snap frozen that locks

freeing process. Freeing process needs to be locked before snapshoting the host file-
system until the segment counter is determined.

6.3 Free space accounting

After a snapshot is mounted we need to determine new values of free space::free

and free space::max. We take actual value of free segments and counts maximal
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free space value in the same fashion as when the host file-system is mounted. A new
value of free space::free is equal to the new value of free space::max, because
there are no live data in area that is usable after snapshot.

Old values of the free space accounting are saved.
Depending on the fragmentation, the resulting value of the free space accounting

can be even greater then the value before the snapshot. In such a case we take the
value before the snapshot. If the space is used according to the new value, there would
be problems when umounting the snapshot.

When some space is returned while a snapshot is mounted, we must test carefully
whether the space was obtained by freeing data created before snapshot was taken or
after. This can be determined from address of a block or an inode. There is one prob-
lem remaining. Once an inode or a block is dirtied we must acquire additional space for
it. But old space cannot be freed. Instead it must be added to free space::delayed,
so-called free space transfer. Of course this can happen only the first time data is
accessed. When they acquire new free space from the area after snapshot, they must
not be transfered any more, until snapshot is umounted.

Addresses cannot be used to determine whether data was transfered or not, as data
is written asynchronously to the free space accounting. It is required to use another
way how to track whether data was accounted in free space before or after the snapshot
was mounted. It differs for a snapshot and for direct or indirect blocks.

6.3.1 Inodes

segment counter for each inode is kept in struct lfs ifile info. Once an inode
is created, its segment counter is set to 0. When an inode is written to the disk, its
segment counter is updated with segment counter of the currently written segment.
When an inode is read from the disk again, its segment counter is initialized from the
segment usage table in the ifile. Finally, when the inode is transfered we zero its
segment counter.

Transfer is done only if a segment counter of an inode is non-zero. Because all
data is synced before taking a snapshot and thus counters are updated, there is no
way how to transfer data written before the snapshot was taken. Because the only
operation, which may change counter to non-zero is an operation that writes inodes,
we know that all data accounted from free space after snapshot have segment counter

set to 0 or to something greater than the segment counter of the last snapshot.

6.3.2 Blocks

There is no reasonable way how to attach something like inode’s segment counter

to buffers, therefore a different approach must be taken. The preallocation bit in
address does the job. This preallocation bit is used to mark data blocks as dirty
and preallocated (see Section 5.1.3). This flag can be reused for deciding if a block
was subtracted from the free space after a snapshot. When a block is dirtied it is
checked if it is preallocated too. If not, it must be preallocated and checked whether
its segment counter is smaller than the snapshot segment counter. If so, its space is
transfered. In any other case the block was written after a snapshot and so it must
be accounted in free space after the snapshot. As for inodes, the only way to clear
the preallocation flag is to write block to the disk. This operation updates address of
that block and moves it to a segment with a counter greater than the snapshot. Each
subsequent dirtying of this block will not issue a transfer because of a new value of
the counter.

6.4 Working segment

Free space accounting, as described in the previous section, needs to be able to simply
decide if a block was created before or after a snapshot. It is mandatory for correct
work. It can be easily determined using a segment counter. But the segment counter
has smaller granularity than the sync operation that typically finishes a partial seg-
ment. The simplest workaround for this problem is not to allow sync to create partial
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segment. So when the sync operation is required by a snapshot a whole segment is
always written out. As a result, the working area is completely in area behind the
snapshot.

6.5 References

For more details, see the code in files snapshot.c, snapshot.h and free space.h.
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Chapter 7

Utilities Implementation
Overview

7.1 mkfs.lfs

The userspace utility mkfs.lfs is used to build a LFS file system on a block device,
usually a disk partition. You can see the commandline usage below. mkfs.lfs sup-
ports many more options than described here, but for the reasons mentioned in the
introduction, a file system with only a well tested default setting is built. Of course
any setting supported by the mkfs.lfs creates a correct file system.

mkfs.lfs [-L volume name] device

-L user specified name for a new volume (default is LFS )
device device where the new LFS volume should be created

(e.g., /dev/hda5 /dev/sda1 /dev/hdb)

mkfs.lfs ’s only task is to build a new empty volume and setup all on-disk struc-
tures (for details on structures see Sec. 4) so that the volume can be mounted by the
Linux kernel. Creating a new LFS volume is a little bit more complicated than a
static file system like the most popular ext2 or its descendant ext3. mkfs.lfs does not
only write segment headers and superblocks to the disk, but also has to write initial
information to .ifile and the root directory. Since the file contains information about
segment-usage and the inode table, writing this file to the disk changes the informa-
tion which is included in the file itself. Therefore a special measures must be taken.
The whole process is divided into three phases. In the first phase the root directory
is written, next the .ifile is created and written. After its inode is know, writing
the superblocks and empty segments (non-data segments) finalizes the whole process.
Detailed description of all phases follows.

7.1.1 Initiation

The first step is to determine the size of the target device, because it determines posi-
tions of the superblocks as well as the initial size of the .ifile . As already mentioned,
the .ifile consists of two parts (see Sec. 4.5 and Fig. 4.3). First part is a static table
with an entry for each segment, whereas the other part is a dynamic inode table. As
mkfs.lfs creates a file system with just a root directory and the .ifile , the inode table
has a known size with just two inodes.

We are trying to keep the mkfs-code as simple as possible. Because we are about
to write only a limited amount of data (.ifile, root) to the beginning of the disk, we use
mmap() to remap first few megabytes of the device to the address space of the mkfs.lfs
process. For the sake of simplicity we support .ifile with double indirect blocks only,
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which limits its size to approx. 1MiB. This implies that the largest supported volume
is 64 TiB. This is enough for current hard drives as well as for the near feature. If
support for larger devices is needed, it is possible to add this.

We were considering whether to use mmap() or seek() and write() but for the
above mentioned limits and since the mkfs.lfs supports different segment and block
size configurations, it is very much simpler not to deal with write-buffers and be able
to access the written parts of disk randomly. We benefit from random access especial
when writing out the .ifile as the finfo structures must be updated. On the other hand
we use seek() and write() for writing non-data segments farther from the beginning
of the device. Both approaches are described in more detail in Sec. 7.1.4 and Sec. 7.1.5

Ifile initiation

After we know how large the .ifile should be, we allocate its in-memory representation.
Throughout the whole process of a file system creation the .ifile is updated and read
until finally written to the disk. The most important for understanding the following
text is that the segment usage table is also initiated. Positions of the superblocks is
fully determined by the size of the device. The inode table carries information about
which segments are reserved and which are used for superblocks as well as which
segment where written by data. .ifile is described in more detail in Sec 7.1.4.

7.1.2 Write functions design

This section describes the general structure of functions used to write data to the
device. Currently only root directory and .ifile is written, but it gives us an opportunity
to extend the mkfs.lfs abilities to include more data and structures if needed.

Each write function takes as a parameter number of the first segment where to
write. Because of the log nature of this file system, we write contiguously to successive
segments as mkfs.lfs , to certain extent, simulates writing by the kernel module.
Therefore each of the functions which write data to the device return the number
of the last written segment. This, incremented by 1, can be passed to a next write
call. It is legal to write a segment only partially, so we do not have to check if the
last segment was fully written, but the new write can start in the next one. This
simplifies the write code very much. Leaving gaps in segments is not an issue since
data will become changed and moved to another segments and those abandoned will
be reclaimed by the garbage collector

Another write issue is related to the superblocks. No data is written to segments
that are reserved for superblocks (see Sec. 4.2 on page 17). Therefore each function
must take care of that and skip them. It is simply achieved by reading the segment
usage table from the in-memory .ifile .

7.1.3 Root directory

Function write root() writes the root directory together with its inode to the first
data-segment (no data segments were written yet). Actually, the first available segment
must be found since there might be some reserved segments at the beginning of the
device, perhaps followed by the first superblock.

In this operation only a single segment is written as the root directory has only one
block and only one inode is place in this segment. As the minimal size of a segment is
256KiB, there is space enough for both.

Data written to this segment are basically static, or better always the same re-
gardless of settings. First, the segment summary is filled, a single block root directory
is written to the first data block (., .. and .ifile entries) and the inode of that
directory is placed in the next block (inode number LFS INODE ROOT as defined in
include/linux/lfs fs.h) and the only finfo record is filled. Finally, the segment us-
age table is updated accordingly and root’s inode address is set in the inode table.

More details can be found in the source code in utils/mfks/mkfs.c:write root
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7.1.4 Ifile

Ifile completition

The .ifile holds the up to date information about the data written to the disk. Unfor-
tunately writing the .ifile to the disk changes the information inside the .ifile itself.
Moreover updating the .ifile is complicated by the fact that the affected section of the
.ifile is most likely already written to the disk and would have to be looked up and
changed.

We opted for a different approach. Since we know how large the .ifile is that we
are about to write out to the device, we can determine which segments are going to be
written and how many data are going to be used in each segment. Segments that will
not be written are marked as empty in the segment usage table. All this is accomplished
in the fill segment usage table() function in the utils/mfks/ifile.c file. We do
not have to figure out what the address of the .ifile inode will be, since the inode
address is not written to the inode table. Address of this inode must be written to the
superblocks, because there must be a way how to find the inode table, at the moment
of the file system mount. The inode table is stored in the .ifile .

Not only the data part of the .ifile must be written, but also the indirect blocks
in the case of a large file. Addresses are not known prior to the actual write out.

Ifile in-memory structure

struct i f i l e {
unsigned i node cnt ;
unsigned s e g cn t ;
unsigned s i z e ;
unsigned dblocks ;
unsigned segment counter ;
struct l f s s e gmen t u sag e ∗ s eg usage ;
struct l f s i n o d e t a b l e e n t r y ∗ i t ab ;
void ∗ data raw ;
l f s a d d r t ∗ i b l o ck s raw ;
int i b l o c k s ;
l f s a d d r t ∗ i b l k 2nd ;

struct l f s s e gmen t u sag e ∗ s e g u s ag e a c t ;
} ;

Figure 7.1: in-memory .ifile structure

Fig. 7.1.4 presents the in memory structure of the .ifile . There are several counters
which are explained in the code commentary but the data part is worth more detailed
description here.

When the .ifile is initiated in the ifile init() function, its size is already known
so all memory can be allocated. ifile new() computes the required space for data
and sets the raw data item of the ifile structure to point to the allocated unstructured
memory. Because we require access to different parts of the .ifile as a different struc-
tured memory, we remap the other pointers of the struct ifile to point to various
offset within the allocated memory area. remap pointers() sets the ifile.seg usage

to point to the beginning and ifile.itab just after the segment usage table. Extra
space is allocated for indirect blocks (iblocks raw) and similarly the iblk 2nd is set
to point to the second-level indirect block within this indirect block array.
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Ifile write out

Writing the .ifile to the disk is performed by two nested loops. The outer loop in the
ifile.c:write to disk() iterates per segment. First, the new segment is zeroed and
the segment summary is filled. Second, the number of blocks which fits to the current
segment must be figured out. We cannot use the whole unused space in the segment,
because of the finfo records in the end of the segment. Both data blocks and relevant
finfos must fit into the same segment. get finfos block() returns base pointer of the
finfo block. Finfo records are filled when each block is written. Because the finfo base
pointer points to a mmap()ed area, writing via this pointer means writing directly to
the device, so unnecessary memory copying is avoided.

write blocks() is responsible for writing number of data or indirect blocks as well
as filling the finfo records. The inner loop in the write blocks() function writes a
single block to the device per iteration. There are several different kinds of blocks and
each of needs a different way of handling. The cases are as follows :

• data block - all data blocks are written out prior to the indirect blocks. This
enables us to update indirect blocks with data block addresses at the moment
when the address is known without any need of address precomputation. A data
block address is saved by save dblock addr() which means that the address is
written to the .ifile inode or to an indirect block. The location of the address
record is determined by the block number and save dblock addr() performs
that simple computation.

• second level indirect block - identical to the data blocks, its address is saved to
a parent indirect block by save 2nd iblock addr()

• first level indirect block and second level indirection parent block - the address is
saved directly to the .ifile inode blocks array (LFS INODE INDIR BLOCK(1) resp.
LFS INODE INDIR BLOCK(2))

• single indirect block - when an .ifile has only a single indirect block, we have
to skip the second level in the ifile.iblocks raw. That is the reason why
there is a special adjustment code in the else branch inside the inner loop (see
write blocks() code).

Ifile inode

For the sake of simplicity, write inode() places the .ifile inode into a new segment. It
might look like a waste of space, but .ifile inode will be the most frequently updated
inode so after a sync this inode will be written to a new location and the segment
is going to be reclaimed by the garbage collector as already mentioned in Sec. 7.1.2.
write inode() fills the segment summary and writes the inode to the first data block
of that segment. Since there are no file-data-blocks, no finfos are included. Address
of the .ifile is saved in the superblock

7.1.5 Non-data segments

The non-data segments are written last. This includes superblocks and empty segment
summaries of unused segments.

Superblocks are written in the write sb() function. First the in-memory tem-
porary superblock (CPU endianness template) is converted to little endianess (LFS
native) and then written to the disk. Because the disk might be very large, we prefere
seeking over memory mapping. Since the device file is large, usually more than 4GiB,
we have to use lseek64() which can deal with large files.

7.2 Garbage collector - user space part

7.2.1 Overview

The main function of the user space GC (we will call it UrSp GC from now on) is a
message loop. It waits for any messages from the kernel, parses them, and processes
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the information. If need be, it sends requests to the kernel part.

The UrSp GC maintains its data basically in a linklist of segments, with an index
table for faster access. The linklist is always up-to-date with all the information
received from kernel. It includes attributes like live blocks in next 10 segments, number
of consecutive segments on either side of the segment in question, etc.

There are two types of cleaning requests. First is emergency request, it happens
when system sources are very low as is disk space. For this request, the UrSp GC
mantains a special table, and it quickly picks the best candidate to clean. The second
type of request is issued when the number of free segments decreases to certain value.
The UrSp GC then executes a function over the linklist to find the best candidates to
collect.

Depending on the state of the system (used segments, number of received messages,
etc.) the UrSp GC can run the choosing procedure and send a clean request by itself.

7.2.2 Source code

The source code of UrSp GC is located in the directory /gc (NOT /src/gc!). The
whole code is thoroughly commented, so I will describe only the files, and what is
included in them and advise you to go ahead and open the source code for further
details.
Header files: gc const.h - this file includes all the global constants for the UrSp GC
The following header files are each declarations for their source (.c) files.
gc.h - this file includes declarations for the main gc.c file
gc er table.h - contains declaration for emergency table
gc idx table.h - declaration for index table pointing to linklist
gc linklist.h - declarations for the linklist with segment information
gc netlink comm.h - declarations for netlink communication

Source files: gc.c - implementation of the main message loop and message processing
gc er table.c - source code for the emergency table
gc idx table.c - implementation of the index table (pointing to linklist)
gc linklist.c - implementation of the linklist with segment information
gc netlink comm.c - netlink socket operations

7.2.3 Most important functions

main function. The main function incorporates the message loop (using the netlink
socket operations from gc netlink comm.c). Calls parse and do task when a message
from kernel is received.
parse function. This function parses the data from the socket in to UrSp GC’s vari-
ables and data structures.
do task function. It’s basically a switch over different message types from kernel.
It uses data from parse to update the persistent data structures (linklist, idx table,
...). It calls functions from gc er table.c, gc idx table.c and gc linklist.c or
choose segs to clean from main.c, which finds the most suitable candidates for col-
lection.

There are functions for the data-modifying messages (SET, SET PARTIAL, UPDATE, iden-
tUNSET, identREPAIR) in component files (gc er table.c, gc idx table.c and gc linklist.c),
that change underlying structures accordingly.

7.2.4 Decision process

There are two cases, where the UrSp GC makes a decision. It is WHETHER to
clean and WHAT to clean. Both are heavily parametrized, so we will try to give you
the big picture here. For further information refer to gc.c.
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We would also like to mention, that this part is definitely worth deep research and
the functions for these operations tended to get more complex over the course of the
project and they would most definitely get much more complex in a real product.

We base the process of choosing whether to clean on these information:
First, we base this on time and number of received messages. We will only further
consider cleaning if at least GC RECALC TIME seconds passed since last recalculation/-
cleaning OR if there was at least GC NEW SEGS FROM LAST RECALC created OR if we
recieved more than GC CHANGES NEEDED changing messages from last collection.
If one of these three time/message dependant constraints is fullfilled we look into
the issue of used space. There are to values of interest here. If there is less than
max(SC

10
, MINseg − 2) segment, we don’t clean anything. If there is more than that,

but less than max(MINseg − 2, min(SC
5

, 50)) segments, we clean only lonesome seg-
ments (with empty segments on both sides from them). And finally if there is more
segments than the second constant, we do the full choosing algorithm. Where MINseg

is the smallest possible number of usable segments on a volume and SC is the actual
number of segments of this volume. min and max are standard min, max functions
returning the smaller/bigger of their operands. We use real numbers instead of further
constants to make the function readable.

The segment choosing algorithm is obviously most based on live data (LD) in each
segment and on the age of that segment. But it is also based on the information about
the segments around the evaluated one. The algorithm checks the sum of life blocks in
next few semgents (this is also important for choosing blocks of segments to be cleaned
instead of “best” individuals). Then it takes in account free segments in the previous
one hundred and next one hundred of segments. Yet another modifier is the number
of consecutive segments in front and behind this one. It’s obvious, that it is better to
collect something at the edge rather than in the middle of a bunch of segments.
Schematic equation for evaluation:

eval(seg) = LD∗age∗LD w neighb∗(100−freenext)∗(100−freeprev)∗consprev∗consnext

(7.1)

7.2.5 Logging

The UrSp GC logs the important messages in the syslog, where they can be viewed.
The lines with logs are preceded by lfs gc. It logs on 2 different levels LOG INFO and
LOG ERR. The messages of the second type are also printed on the error output.
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MKFS.LFS(8) MKFS.LFS(8)

NAME

mkfs.lfs - create a lfs filesystem

SYNOPSIS

mkfs.lfs [ -L new-volume-name ] device

DESCRIPTION

mkfs.lfs is used to create a lfs filesystem (usually in a disk parti-

tion). device is the special file corresponding to the device (e.g

/dev/hdXX).

-L new-volume-label

Set the volume label for the filesystem to new-volume-label.

AUTHOR

This version of mkfs.lfs has been written by Tomas Hruby <byjac@mat-

fyz.cz>.

AVAILABILITY

mkfs.lfs is part of the LFS project and is available from

http://nenya.ms.mff.cuni.cz/~holub/lfs/

SEE ALSO

dump.lfs(8), fsck.lfs(8),

mkfs.lfs June 2006 MKFS.LFS(8)
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DUMP.LFS(8) DUMP.LFS(8)

NAME

dump.lfs - dump lfs filesystem information

SYNOPSIS

dump.lfs device [ all | info | sb | segs | ifile | inode=inode_number |

seg=segment_number | dir=dir_ino ]

DESCRIPTION

dump.lfs prints the super blocks, .ifile content and segment summaries

for filesystem present on device

OPTIONS

all show all available informations

info show summary of filesystem

sb show super block of filesystem

segs show segments of filesystem

ifile show ifile content

inode=inode_number

show inode selected by inode number

seg=segment_number

show segement content of segment selected by segment number

dir=dir_ino

show directory structure from directory selected by directory

inode number

AUTHOR

dump.lfs was written by Jan Taus <pan_tau@matfyz.cz> and Tomas Hruby

<byjac@matfyz.cz>

AVAILABILITY

mkfs.lfs is part of the LFS project and is available from

http://nenya.ms.mff.cuni.cz/~holub/lfs/

SEE ALSO

fsck.lfs(8), mkfs.lfs(8)

lfs utils Jun 2006 DUMP.LFS(8)
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The GNU General Public
License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,

Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you modify
it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have
is not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.
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The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying,
Distribution and Modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The “Program”, below, refers to any such program
or work, and a “work based on the Program” means either the Program or
any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the ab-
sence of any warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an ap-
propriate copyright notice and a notice that there is no warranty (or else,
saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sepa-
rate works. But when you distribute the same sections as part of a whole which
is a work based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.
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In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface defi-
nition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not ac-
cept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
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conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of
the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as
a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical distribu-
tion limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version”, you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no warranty
for the program, to the extent permitted by applicable law. Ex-
cept when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any
kind, either expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the
program is with you. Should the program prove defective, you as-
sume the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in writ-
ing will any copyright holder, or any other party who may modify
and/or redistribute the program as permitted above, be liable to
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you for damages, including any general, special, incidental or con-
sequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a
failure of the program to operate with any other programs), even
if such holder or other party has been advised of the possibility of
such damages.
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