
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Michal Kebrt

Unit Checking for Java IDE

Department of Software Engineering

Advisor: RNDr. Ondřej Šerý

Study Program: Computer Science, Software Systems

Prague, July 2008

First of all, I would like to thank my advisor Ondřej Šerý for his suggestions, ideas, and
a helpful attitude for all the time I was working on this thesis.

Many thanks go to the NASA Ames Research Center, especially to Peter Mehlitz, for
providing a lot of valuable information about Java PathFinder

Last but not least, I would like to thank my friends and family for their support in my
life and studies.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použit́ım cito-
vaných pramenu. Souhlaśım se zapujčováńım práce.

I hereby declare that I have elaborated this master thesis on my own and listed all used
references. I agree with making this thesis publicly available.

Prague, 20th July 2009

Michal Kebrt

Contents 2

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Goals . 9

1.3 Outline of the Thesis . 9

2 Unit Testing and Model Checking 10

2.1 Unit Testing . 10

2.1.1 JUnit . 11

2.2 Model Checking . 13

2.2.1 Java PathFinder . 15

2.3 Unit Checking . 18

2.3.1 UnitCheck . 19

3 Unit Checking with JUnit and JPF 22

3.1 UnitCheck Architecture . 22

3.2 Running JUnit Tests Under JPF . 23

3.3 Custom JUnit Runner . 25

3.4 Collecting Information About Test Execution 29

3.5 JUnit as a Part of UnitCheck Input . 32

3.5.1 MJI Applied on JUnit Listener . 32

3.5.2 JUnit – Perfect Exception Firewall 34

4 UnitCheck in 3rd Party Programs 37

4.1 Introduction . 37

4.2 Ant Task . 39

4.3 Eclipse Plugin . 40

4.3.1 Structure of the Plugin . 40

4.3.2 Running the Checking Process . 42

4.3.3 GUI – Views and Preference Page 44

Contents 3

4.3.4 Displaying Results of Checking . 45

4.3.5 Distribution . 47

5 Case Study 49

5.1 Daisy Filesystem . 49

5.2 Testing Environment . 49

5.3 Complex Test Case . 51

6 Related Work 56

6.1 Testing Frameworks . 56

6.1.1 Java PathFinder Test System . 57

6.1.2 Agitar . 58

6.1.3 Pex . 59

6.2 IDE Integrations . 60

6.2.1 JPFep . 61

6.2.2 Visual Java PathFinder . 62

7 Summary and Conclusion 64

A User Manual 66

A.1 Command-line Tool . 66

A.2 Eclipse Plugin . 67

A.2.1 Installation . 67

A.2.2 Running . 68

A.2.3 Result of Checking . 69

A.2.4 Inspecting Error Traces . 70

A.3 Ant Task . 72

Bibliography 79

List of Figures 4

List of Figures

2 Unit Testing and Model Checking

2.1 State space traversal of the sample program 17

3 Unit Checking with JUnit and JPF

3.1 UnitCheck architecture . 23

3.2 Running JUnit test under JPF . 24

3.3 More tests in one JPF run . 27

3.4 JUnit runner for running single tests . 28

3.5 Extraction of test method names . 29

3.6 JUnit RunListener and related classes . 30

3.7 JPF SearchListener and related classes 31

3.8 JUnit as a part of application under test 32

3.9 Model Java Interface . 33

3.10 Model Java Interface – concrete example 35

4 UnitCheck in 3rd Party Programs

4.1 UnitCheck external interface . 38

4.2 UnitCheck task UML diagram . 40

4.3 Running UnitCheck within the plugin . 42

4.4 Launch delegate and launch shortcut . 43

4.5 ResultTreeView – the summary of checking results 46

4.6 PathView – details of found errors . 47

5 Case Study

5.1 Daisy lock sequences – allowed and forbidden 51

5.2 Restoring lock information when backtracking 52

List of Figures 5

6 Related Work

6.1 Java PathFinder Test System – Structure of Tests 57

6.2 Java PathFinder Test System vs. UnitCheck 58

6.3 JPFep – Displaying Results of Checking 62

6.4 VJP Views – Topics, Output . 63

A User Manual

A.1 Running UnitCheck from Package Explorer 68

A.2 Running UnitCheck from Run Configurations 69

A.3 Check Summary view . 70

A.4 Path view . 71

Listings 6

Listings

2.1 JUnit test example . 12

2.2 Sample program with random values . 16

2.3 Incorrect implementation of a banking system 20

2.4 Tests of the banking system . 20

3.1 Running the JUnitCore program . 24

3.2 JPF embedded in UnitCheck . 25

3.3 Test class using the Verify choice generator 26

3.4 JUnitCore runner . 26

3.5 TestReportListener model class . 34

3.6 TestReportListener native peer class . 34

3.7 StopExecutionProperty is used to stop JPF 36

4.1 UnitCheck MANIFEST.MF file . 41

4.2 UnitCheck plugin.xml file . 41

5.1 Common base for all Daisy tests . 50

5.2 Simple Daisy test . 50

5.3 Testing environment for checking the LockOrderProperty 52

5.4 JUnit test violating LockOrderProperty 54

6.1 Parametrized vs. Traditional Unit Test . 59

Název práce: Unit Checking for Java IDE
Autor: Michal Kebrt
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Ondřej Šerý
E-mail vedoućıho: ondrej.sery@dsrg.mff.cuni.cz

Abstrakt:

Kĺıčová slova: unit testing, model checking, JUnit, Java PathFinder, Eclipse

Title: Unit Checking for Java IDE
Author: Michal Kebrt
Department: Department of Software Engineering
Supervisor: RNDr. Ondřej Šerý
Supervisor’s e-mail address: ondrej.sery@dsrg.mff.cuni.cz

Abstract:

Keywords: unit testing, model checking, JUnit, Java PathFinder, Eclipse

1 Introduction 8

Chapter 1

Introduction

1.1 Motivation

In recent years, the field of code model checking has advanced significantly. There exist
a number of code model checkers targeting mainstream programming languages such
as C, Java, and C# (e.g., SLAM [27], CMBC [4], BLAST [23], Java PathFinder [11],
and MoonWalker [35]). In spite of this fact, the adoption of the code model checking
technologies in the industrial software development process is still very slow. This is
caused by two main reasons (i) limited scalability to large software, and (ii) missing tool-
supported integration into the development process.

The current model checking tools can handle programs up to tens of KLOC and
often require manual simplifications of the code under analysis [56]. Unfortunately, such
program size is still several orders of magnitude smaller than the size of many industrial
projects.

Apart from the scalability issues, there is virtually no support for integration of the
code model checkers into the development process. Although some tools feature a user
interface in the form of a plugin for a mainstream IDE (e.g., SATABS [32]), creation of
a particular checking scenario is not often discussed or supported in any way. A notable
exception is SLAM and its successful application in the very specific domain of kernel
device drivers.

These two obstacles might be overcome by employing code model checking in a way
similar to unit testing – we use the term unit checking first proposed in [38]. Unit test-
ing is widely used technique for ensuring quality of software during its development and
maintenance. Frameworks (e.g., JUnit [13]) exist that facilitate creation, execution, and
evaluation of simple unit tests and developers are familiar with writing test suites. Pro-
viding model checking tools with a similar interface would allow developers to directly
benefit from model checking technology (e.g., of exploration of all thread interleavings
and random choices) without changing their habits. Moreover, applying model checking
to smaller code units also helps avoiding the state explosion problem, the main issue of
the model checking tools.

1.2 Goals 9

1.2 Goals

The goals of the presented thesis are to

� explore possibilities of unit checking using the Java PathFinder model checker,

� implement support for unit checking into a Java IDE (either NetBeans or Eclipse),

� consider extending JUnit to support unit checking.

1.3 Outline of the Thesis

Two techniques used for ensuring quality of software are described in Chapter 2, Unit
Testing and Model Checking. This chapter also contains the list of existing integrations
of unit testing and model checking. A novel idea of unit checking, i.e., running unit tests
under a code model checker, is proposed and described in more detail. JUnit and Java
PathFinder, the tools used in our integrated work, are also thoroughly presented.

The integration of JUnit and Java PathFinder is called UnitCheck. Chapter 3, Unit
Checking with JUnit and JPF, shows the design of UnitCheck, how it uses extension
interfaces provided by JUnit and JPF, and difficulties that had to be solved.

UnitCheck itself is a Java library with no user interface. Chapter 4, UnitCheck in 3rd
Party Programs, explains how UnitCheck is embedded in third party programs, especially
in Eclipse and Ant.

A short case study is presented in Chapter 5, Case Study. The program selected for
the case study was earlier used in a contest for various verification tools.

A list of various related techniques and tools is presented in Chapter 6, Related Work.
It includes testing frameworks and integrations of model checkers in IDEs.

The thesis is concluded in Chapter 7, Summary and Conclusion. A few ideas for future
work are suggested.

2 Unit Testing and Model Checking 10

Chapter 2

Unit Testing and Model Checking

This chapter focuses on the general description of two techniques used for the quality
assurance of software. Section 2.1 describes unit testing while, Section 2.2 covers model
checking. In each section, one particular example of a tool is taken in more detail – JUnit
as a unit testing framework and Java PathFinder as a model checker. Section 2.3 lists
different approaches for integrating unit testing and model checking. A brief introduction
of UnitCheck, which integrates both previous tools, then follows.

2.1 Unit Testing

In software development, testing is one of the important parts of the whole development
process. Software testing includes many different methods and approaches. To make
sure that the smallest pieces of a software program (or units) meet specification and
work exactly as programmers expect, unit testing [22] is usually employed. In procedural
languages, unit is a procedure (or function) or a set of procedures that make up a data
type. In object-oriented world, units are methods or the whole classes. Instead of unit,
the term class under test (CUT) is often used.

Unit tests (or test cases) are primarily used by programmers to feel confident about
the code, which is in contrast to functional and acceptance tests that are prepared for
the end users. Unit tests are usually written in the same language as the original code.
Each test comprises of a test driver that executes the unit (e.g., a method is called on an
instance of a class under test) and checks that it works correctly (e.g., the return value
of a method meets the expectation). A lot testing frameworks for different programming
languages exist that allow for easy creation and batch running of test cases. They are
collectively known as xUnit frameworks – JUnit for Java and NUnit for .NET languages
are two concrete examples.

In ideal situation, units are tested in isolation from other units. With growing com-
plexity of units it becomes hard to test them separately. Thus, programmers have to
follow a set of rules [46] to write easy testable units. It includes the usage of stubbing
and mock objects to implement a dummy environment of dependencies.

Unit testing, part of the extreme programming methodology, is often used together
with test-driven development [50], where

2.1 Unit Testing 11

� tests are written before the functional code is implemented,

� changes in the code are always initiated by a test fail (either by an existing test or
a new one),

� after the code has been changed or added, all tests are run again to check that
nothing has been broken by the changes,

� refactoring is frequently used to make the overall code quality better.

2.1.1 JUnit

JUnit [13, 63] is a framework for writing unit tests on Java classes in a convenient way. It
was one of the first xUnit frameworks and now it is a very popular tool used in a variety
of projects because of the features it provides:

� Different user interfaces for running tests, both command-line and graphical ones.
JUnit is integrated into IDEs (Eclipse, NetBeans, . . .) and other development tools
(Ant, Maven, . . .).

� A lot of extensions, which add more functionality to JUnit, exist (e.g., test coverage
reports).

In Java applications, unit is often a single method. Therefore, a test tries to show that
a method behaves according to its API contract. Specifically, the test checks whether

� for a particular input data (method arguments), the method returns correct values,

� in the situations specified by the contract, the method throws correct exceptions.

So far, a couple of terms were used without a proper definition. Now it is time to
make the things clear within the JUnit context.

Test (test method)
In JUnit, unit tests, or simply tests, are represented as Java methods. JUnit provides
means for marking a method as a test.

Test case (test class)
More tests can be grouped within a test case. It is a Java class containing one or
more test methods.

Test suite
Test suites stand at the top of the test hierarchy. Test cases and tests can be added
into a test suite and run together.

Test runner
Runners allow to execute test suites (and test cases) under JUnit. Besides graphical
and command-line runners bundled with JUnit, additional runners can be imple-
mented.

2.1 Unit Testing 12

The procedure of writing JUnit tests is not very complicated and JUnit IDE plugins
can make it even easier. Usually there is a single test case for each Java class to be tested.
Within the test case, there is one or more tests for each method of the tested class.

JUnit now exists in two versions – 3 and 4. Although the version 4 was first released
in 2006, the previous version is still very popular because the backward compatibility has
been kept. The two versions are completely different in the way of creating tests [37].
Table 2.1 brings a brief comparison, the main change in the version 4 is the usage of Java
annotations.

Table 2.1 Comparison of JUnit 3 and JUnit 4

JUnit 3 JUnit 4
Test cases
and tests

A test class extends TestCase,
each test method’s name must
start with ”test”.

Test cases do not have to be ex-
plicitly marked. Tests are marked
with the @Test annotation.

Initialization
and cleanup

JUnit invokes the setUp and te-

arDown methods before and after
each test.

Methods marked with the @B-

efore and @After annotations
are invoked before and after each
test.

Exceptions If an exception is expected to be
thrown by the code under test,
the fail method is used when the
exception is not thrown.

It is enough to use the @Test-

(expected=<classname>) anno-
tation.

Other
features

GUI test runners (Swing, AWT)
are available (not in the version
4). JUnit distinguishes between
failures and errors1.

Annotations for omitting tests
from execution (@Ignore) and for
setting timeouts given to exe-
cution (@Test(timeout=<time>)
are provided.

To check conditions that must be true in order to finish tests successfully, JUnit
assertions are used. As an example assertEquals(Object, Object) asserts that two
objects are equal. If an assertion does not hold, an exception is thrown, caught by JUnit,
and reported as a test failure.

Listing 2.1 shows a class, simple math implementation, that provides methods for
addition and division. Below we see the test case written in JUnit 4 notation (@Test
annotation is used before each method). Let us start with the first addition test. When
the implementation of the add routine does not work correctly (in other words when 7+5
is not 12), the assert will throw an exception and JUnit will report a test failure. In the
second test, an extended version of the @Test annotation is used. It says that a particular
exception is expected to be thrown when the division by zero is performed. In contrast
to the previous example, when the exception is not thrown, it means test failure.

Listing 2.1: JUnit test example

public class SimpleMath {

1 Failure is anticipated, it is a result of a failed assertion in a test. Error is not anticipated, it is
caused by an uncaught exception in a test.

2.2 Model Checking 13

public static double add(double a, double b) {
return a + b;

}
public static double divide(double a, double b) {
if (b == 0) {

throw new ArithmeticException("Division by zero");
}
return a / b;

}
}
// −−−
public class SimpleMathTest {

@Test
public void testAddition() {
assertEquals(12, SimpleMath.add(7, 5));

}
@Test(expected=ArithmeticException.class)
public void testDivisionByZero() {
SimpleMath.divide(1, 0);

}
}

2.2 Model Checking

To ensure that software systems meet their specifications, a wide range of verification
techniques is applied. Peer reviewing, static analysis of code, and testing are most often
used. Previous sections described unit testing as a kind of software testing. Another tech-
nique is model checking [36, 30, 52] used mainly for verification of abstract representations
of concurrent systems. In recent years, it has become more popular in the industry and
was successfully employed for verification of a couple of software and hardware projects
[43, 42, 67].

The basic concept refers to mathematical logic. Model checking determines whether
a given structure is a model of a given logical formula. When checking hardware and
software systems, the terms model and property are often used instead of mathematically
rigorous terms structure and formula.

� Models accurately describe the behavior of systems. Both finite and infinite systems
are supported by different model checking tools. In either case, the state of the
system during checking holds the current values of variables, program counter, etc.
Transitions define how the system moves from one state to another. Models are
written in special-purpose modelling languages (e.g., Promela [17]) or derived from
general programming languages (e.g., old versions of JPF [11]).

� Properties are derived from system’s specifications and tell what the system should
do and what not (e.g., a property requires that a deadlock, uncaught exception,
or null-pointer dereference does not occur in the system). Properties are usually
expressed as formulas in temporal logic (e.g., LTL in Spin [17]) or by general pro-
gramming languages (e.g., Java in JPF [11]). Some properties are generic and they
can be hard coded in model checkers (e.g., a deadlock property in Spin).

2.2 Model Checking 14

The main objective of model checking is to efficiently find subtle errors in models
or prove they are errorfree. In other words, to check whether a set of properties hold
in a model or not. The answer provided by model checkers is either ’yes’ or ’no +
counterexample’. A counterexample (or error trace) describes the complete execution
path leading to the property violation.

Two basic model checking approaches exist. Symbolic model checking [49] represents
sets of states and transition relations as boolean formulas. It uses algorithms that work
with these symbolic representations and thereby tries to overcome the state explosion
problem which will be described later. Explicit-state model checking represents each
reachable state of the model explicitly and typically stores the state in a hash table2.
Explicit-state model checkers exhaustively explore the state space of the model not to
miss any state, in which a property might fail.

The state space explosion problem is often discussed when dealing with model checking.
The number of states in a model is exponential in the size of its description. It is very
memory-consuming to store all the states and very time-consuming to traverse them.
Although the growth in computer resources allows to check bigger systems than a decade
ago, still the range of systems that can be checked is quite narrow. There are a number
of approaches to tackle this problem and make model checkers more scalable. Some of
these approaches will be pointed out in the next section.

It is important to note that the verification is done with a model of the system, not with
the actual system. Therefore, the results of the verification process are the more relevant,
the better the model resembles the actual system. As a consequence, the analysis of
results provided by a model checker leads to:

� Success, all properties are valid in the model.

� Modelling error, it occurs when the model does not reflect the original system. The
model has to be improved and the verification restarted.

� Design error, it is discovered that the requirements put on the system do not hold in
its actual design. Before the verification can be repeated, the design together with
the model have to be improved.

� Property error, it appears when the property does not reflect the specification of
the system.

It is very beneficial to use model checking at the early stages of the development life-
cycle to reveal inconsistency, incompleteness, and other problems in the specification and
design. Nevertheless, sometimes the details of systems are not known until the implemen-
tation is started and often many errors are introduced during the implementation, despite
the fact they are not present in the design. Furhermore, it may take a significant amount
to time to create a model of a system.

Program model checking [52, 45, 51, 64] is an approach where the actual implemen-
tation, not the model, of a system is the target of the verification. Over the traditional

2 The states themselves are not usually stored in a hash table. Instead, the numbers represeting
states are stored using bitstate hashing.

2.2 Model Checking 15

model checking, this approach has a couple of advantages for the end users. Systems writ-
ten in general programming languages (e.g., C or Java) can be analyzed by program model
checkers without a high degree of expertise in model checking. Moreover, the consistency
between the implementation and the explicit model does not have to be kept.

2.2.1 Java PathFinder

Java PathFinder (JPF) [11, 45] is an explicit-state program model checker for the veri-
fication of Java programs. The word explicit means that each program state reachable
from the initial state is explored and stored for the efficient traversal of the state space.
The word program is used to emphasise that JPF does not require any model of a system
under verification – JPF simply accepts programs in their bytecode form.

Originally, JPF was a translator from Java to the Promela modelling language and
it employed an automata-based model checker called Spin [44, 17]. Later, JPF has been
redesigned, open-sourced, and now it consists of:3

� Custom-made virtual machine that executes Java programs in a different manner
than a normal virtual machine. All thread interleavings and other non-deterministic
characteristics of programs (e.g., random values) are considered to explore the com-
plete state space.

� Set of properties that are checked while JPF traverses the state space. JPF comes
with a plenty of generic properties used for checking that programs being verified
do not contain deadlocks, assertion violations, uncaught exceptions, race condi-
tions, etc. Additional properties respecting specific features of programs can be
implemented by users.

� Set of interfaces for extending JPF (e.g., strategies for searching the state space of
programs, listeners monitoring state space traversal, etc.).

� Model Java Interface (MJI) which is a bridge between the JPF virtual machine and
the host virtual machine4 . MJI is one of the JPF key features, it allows to

– intercept calls to native Java methods and model their functionality (e.g.,
threading has an alternative implementation in JPF),

– execute parts of programs in the host VM instead of JPF VM, such code is
executed atomically and faster (can be used both for Java standard library
classes and user classes),

– use special JPF API in programs under verification (e.g., Verify.getInt(-

1,10) instruments JPF to generate integers from 1 to 10 and systematically
execute the code with each value).

3 As most of these features are used in UnitCheck, their technical details will be described later in
the text.

4 JPF itself is written in Java and runs inside the host virtual machine.

2.2 Model Checking 16

To simulate non-determinism, JPF generates and goes through all non-deterministic
choices. It includes various thread scheduling sequences and random values. All choices
are generated by so called choice generators. The state space traversal is based on two
concepts – backtracking and state matching. Backtracking is used to return into states
that have some unexplored choices left. When JPF reaches a new state, it first checks
whether the state has already been visited (by the mechanism called state matching). If
so, JPF skips the state and backtracks, if not, the snapshot of the state is stored and the
model checker goes deeper into other states reachable from this new state.

The JPF operation is illustrated on a short program from Listing 2.2 which uses
random values as a source of non-determinism5.

Listing 2.2: Sample program with random values

public class Program {
public static void main(String[] args) {
Random r = new Random();
int a = r.nextInt(2); // (1)
int b = 1 − r.nextInt(2); // (2)
int c = a / b;
System.out.println(String.format("%d / %d = %d", a, b, c));

}
}

The following steps are performed when the program is executed under JPF. For better
understanding, the traversal of the program state space is depicted in Figure 2.1.

1. The interpretation of the program bytecode is started in the initial state.

2. When the line marked with (1) is reached, a new choice generator (IntChoiceGen-
erator with the set of values {0,1}) is created, the snapshot of the current state is
stored, and the generator is assigned to the state. The first choice, the integer 0, is
then assigned to the variable a in a new transition.

3. The same sequence happens on the line (2), which causes the integer 1 to be assigned
in b.

4. The result of the division is printed and because the end of the program has been
reached, JPF backtracks to the previous state. There is one more choice left on the
line (2) which results in 0 assigned in b.

5. The division by zero now causes ArithmeticException. Therefore, JPF reports
the complete execution path leading to the error, along with all choices performed
on this path (denoted by red lines in the figure).

6. By default, JPF stops checking when a first error occurs. If it was configured not
to stop, the figure shows how the traversal would continue.

5 JPF has to be executed with the property cg.enumerate_random=true to generate all random
values.

2.2 Model Checking 17

Figure 2.1 State space traversal of the sample program

Up to now, a number of terms were used without an accurate definition. As all of
them will be used henceforth in the next chapters, a short summary follows.

State
State represents the current status of a program under verification. It holds in-
formation about the state of all threads, the state of the program memory, and
the execution history (path, trace) leading to the state. Each state keeps a choice
generator that produces transitions going to other states. In Figure 2.1, states are
denoted by the nodes.

Transition
Transition is a sequence of instructions that lead from one state to the next. All
instructions are executed by the same thread. Every transition ends in an instruction
that produces a new choice generator. In the figure, transitions are illustrated by
the edges.

Choice, Choice generator
Choice is the beginning of a new transition. It can be a different thread selected for
execution or a different value from a set of random values. Choices are produced
by a choice generator one by one every time the model checker backtracks to the
state that has the generator assigned. In JPF, the mechanism of choice generators
is very general and the set of choice types is not fixed. New choice generators can
be added by users (e.g., URIs are choices in web applications).

The biggest limitation of most of existing model checkers is scalability. Nowadays,
JPF can be used on source codes of about tens of KLOC. To face the scalability issues
linked with the program size and state explosion, JPF uses a couple of techniques:

� Search strategy can be chosen or implemented with respect to the character of a
program (DFS, heuristics, . . .). The goal is to reach an error state before JPF runs
out of memory.

� Partial order reduction reduces the number of analyzed interleavings when a con-
current code is checked. It is performed on-the-fly for each thread, consecutive
instructions that do not have effects outside the thread are grouped in a single
transition.

� State-compression and state-abstraction techniques are applied to save a huge amount
of memory during the analysis.

2.3 Unit Checking 18

� MJI enables to execute the code, which users do not want to model check (e.g., li-
brary dependencies), in the host VM. The execution is faster and can save significant
portions of the state space.

Apart from the state explosion problem, JPF suffers from another substantial draw-
back. It uses special versions of some standard Java packages, but not all of them are
implemented. As an example, there is no support for java.awt and java.net. Therefore,
the programs using these packages cannot be analyzed by JPF. The good point is that
the number of supported native methods is rapidly increasing.

2.3 Unit Checking

This section will focus on possible combinations of the two techniques described above
– unit testing and model checking. In research and industry, the term unit checking6

is not widely adopted yet. First, it was proposed in [38] for symbolic model checking
approach that allows verifying a unit of code, e.g., a single procedure or a collection of
procedures that interact together. Other approaches and works do not explicitly mention
unit checking, still they somehow mix model checking with unit testing.

The role of model checking in software testing is described in [24, 28]. Model-driven
unit testing [41] generates test cases from models and derives assertions from visual con-
tracts specified in models. In [57], authors come with an idea of splitting programs into
smaller units, thus facing the state explosion. Environments for checking these units are
automatically derived from specifications written by users. In [59], authors present results
in generating test cases and employing model checking in the automotive industry. An
approach to generate test cases to cover both the specification model and its complement
is proposed in [39]. Symbolic execution is used to generate unit tests by the Symstra
framework [66] and JPF [65]. In [25], mutation analysis is used to generate test cases
from specifications.

Most of previous approaches generate test cases using model checking techniques. In
this work, another way of combining unit testing and program model checking is proposed
along with a prototype implementation. In one sentence, our solution concentrates on
executing unit tests under a model checker. Before the details of the solution are described,
let us explain the motivation behind the idea.

Unit testing is for years well accepted in the industry to find errors in programs, thus
gaining better assurance of quality. Developers are familiar with creation of test cases and
unit testing is supported in most programming languages and development environments.
We believe that model checking has a great potential to become a part of the development
process. It allows to find subtle errors that are hardly to be revealed by traditional testing
techniques. Nowadays, a lot of model checkers for different languages exist, but still they
require some sort of expertise in model checking itself or it takes a significant time for
developers to start using model checking tools efficiently.

Therefore, we decided to gently move model checking closer to developers with a

6 Compositional verification is also used when only units of code are analyzed. Anyway, verification
is a superset of model checking because it includes other techniques, too.

2.3 Unit Checking 19

point of contact put on unit tests. Unit testing frameworks allow to run unit tests in
a comfortable way, either from command-line, IDEs, or other development supporting
tools. The idea is to interchange a unit testing framework with a model checker and
provide users with the same (or at least very similar) convenient way of running tests.
Developers do not have to change their habits and they benefit from model checking
technology. Moreover, applying model checking to smaller code units also helps avoiding
the state explosion problem, the main issue of the model checking tools.

The following list sums up the benefits that unit checking brings to developers over
the traditional unit testing:

� ability to evaluate all thread interleavings, not just a single one,

� possibility to execute the code with all ’random’ values which turns out in better
program coverage,

� efficient handling of the already visited states (do not have to be revisited),

� availability of complete execution paths leading to errors found during checking.

2.3.1 UnitCheck

The previous section presented the general idea of unit checking. Here, the UnitCheck
tool, a concrete implementation of the unit checking approach, will be briefly introduced.
Implementation details are covered in Chapter 3 and the user manual is included in
Appendix A.

UnitCheck integrates two third party products. The unit testing part of the inte-
grated work is represented by JUnit, the model checking capability is provided by Java
PathFinder. These tools were chosen for UnitCheck because they

� target the same programming language – Java,

� are well-known in their areas and used in industry,

� provide rich extension interfaces which is demonstrated by a number of extensions
that exist for both,

� are open source, actively developed, and have a developer community around them.

The UnitCheck tool allows for execution and evaluation of small units of code using
the Java PathFinder model checker. UnitCheck accepts standard JUnit tests (in versions
3, 4) and exhaustively explores the reachable state space including all admissible thread
interleavings. Moreover, the tests might feature non-deterministic choices, in which case
all possible outcomes are examined. To provide users with a convenient way for using the
tool, the Eclipse plugin and Ant task were implemented.

Examples of two JUnit tests that would benefit from the analysis performed by
UnitCheck (in contrast to standard unit testing) are presented in Listing 2.4. The code un-
der test, in Listing 2.3, comprises of bank accounts and bankers that sequentially deposit

2.3 Unit Checking 20

money to an account. The first test creates two bankers for the same account, executes
them in parallel, and checks the total balance when they are finished. UnitCheck reports
a test failure because the line marked with (1) is not synchronized. Therefore, with a
certain thread interleaving of the two bankers, the total balance will not be correct due to
the race condition. In most cases, JUnit misses this bug because it uses only one thread
interleaving.

The second test demonstrates the use of a choice generator (the Verify class) to
conveniently specify the range of values to be used in the test. UnitCheck exhaustively
examines all values in the range and discovers an error, i.e., the negative account balance.
When using standard unit testing, the test designer could either use a pseudorandom
number generator (the Random class) and take a risk of missing an error, or explicitly loop
through all possible values, thus obfuscating the testing code.

Listing 2.3: Incorrect implementation of a banking system
public class Account {

private double balance = 0;

public void deposit(double a) {
balance = balance + a; //(1)

}
public void withdraw(double a) {

balance = balance − a;
}
public double getBalance() {

return balance;
}

}

public class Banker implements Runnable {
private Account account;
private double amount;
private int cnt;

@Override
public void run() {

for (int i=0; i < cnt; ++i) {
account.deposit(amount);

}
}

}

Listing 2.4: Tests of the banking system
@Test
public void testDepositInThreads() {

Account account = new Account();
Thread t1 = new Thread(new Banker(account, 5, 5));
Thread t2 = new Thread(new Banker(account, 10, 5));

t1.start(); t2.start();
t1.join(); t2.join();
assertEquals(account.getBalance(), 25 + 50, 0);

}

2.3 Unit Checking 21

@Test
public void testDepositWithdraw() {

Account account = new Account();
int income = Verify.getInt(0, 10);
int outcome = Verify.getInt(0, 10);

account.deposit(income);
assertEquals(account.getBalance(), income, 0);
account.withdraw(outcome);
assertEquals(account.getBalance(),
Math.max(income − outcome, 0), 0);

}

3 Unit Checking with JUnit and JPF 22

Chapter 3

Unit Checking with JUnit and JPF

In this chapter, a focus will be given on UnitCheck, a prototype implementation of the
unit checking idea described in Section 2.3. The architecture of UnitCheck is covered
in Section 3.1. It serves as a preview of the UnitCheck design without problems being
deeply discussed. The following sections describe individual parts of UnitCheck in more
detail. Sources of problems and different approaches to overcome them are also presented.
Section 3.2 describes how JUnit tests can be run under JPF and how to embed JPF in
UnitCheck. Section 3.3 discusses reasons for the usage of a custom runner for executing
JUnit tests. Section 3.4 describes how JUnit and JPF listeners are used to collect re-
ports about the test execution progress. Problems caused by running different parts of
UnitCheck in different virtual machines are presented in Section 3.5.

3.1 UnitCheck Architecture

An overview of the UnitCheck architecture is depicted in Figure 3.1. The core module of
UnitCheck, the actual integration of JPF and JUnit, is enclosed in the central box. It is
compiled into a Java library so that it can be easily embedded into other Java applications
(e.g., into an IDE). As an input, the core module takes an application under analysis, the
JUnit-compliant test cases, and optionally additional properties to fine-tune JPF. The
analysis is then driven and monitored via the UnitCheckListener interface.

It is important to note that neither JPF nor JUnit functionality and structures are
directly exposed outside the core. The UnitCheckListener interface hides all JPF and
JUnit specific details. This solution brings a couple of advantages:

� extensions (e.g., Eclipse plugin) implement only the single (and simple) listener
interface,

� in future, both JPF and JUnit can be replaced with similar tools without modifying
existing extensions.

Inside the core, UnitCheckListener is built upon two interfaces – JPF SearchList-

ener and JUnit RunListener. SearchListener notifies about property violations (e.g.,
deadlocks) and provides complete execution history leading to a violation. RunListener

3.2 Running JUnit Tests Under JPF 23

informs about assertion violations and other uncaught exceptions. UnitCheck processes
reports from both listeners and provides them in a unified form to higher levels through
UnitCheckListener.

When analyzing the test cases, two Java virtual machines are employed. The first
one is the host virtual machine in which UnitCheck itself and the underlying JPF are
executed. The second one is JPF, a special kind of virtual machine, which executes
JUnit. Subsequently, JUnit runs the input test cases (in Figure 3.1, the code executed
inside the JPF virtual machine is explicitly marked).

Figure 3.1 UnitCheck architecture

The information about the test case progress provided by the JUnit RunListener

interface is available only in the JPF virtual machine. To make this information accessible
in the host virtual machine, the JPF Model Java Interface is used. It allows to execute
parts of the application under analysis in the host virtual machine instead of the JPF
virtual machine. Each class that is to be executed in the host VM has a corresponding
native peer counterpart. This mechanism is used for the TestReportListener class.

3.2 Running JUnit Tests Under JPF

JUnit tests are usually executed by developers through IDE plugins, Ant tasks, or using
the console JUnit runner. The first two options for running JUnit are very convenient
and display test execution results and summary reports in a way comfortable for reading
and locating bugs. The latter option, on the other hand, is suitable for integrating JUnit
in custom build scripts or other development supporting tools.

JPF can be viewed as an alternative Java virtual machine that runs Java executable
programs, but in a different manner than a normal virtual machine. The JUnit console

3.2 Running JUnit Tests Under JPF 24

runner (JUnitCore) is an example of a Java executable program. The only argument of
the runner describes the fully qualified name of a test class that will be executed under
JUnit. It brings us to the general idea of interconnecting the JUnit and JPF tools – take
a JUnit runner, a test class and run them under JPF same as any other Java application
(Figure 3.2 illustrates it clearly).

Figure 3.2 Running JUnit test under JPF

JPF is bundled with executables that provide a similar user interface as normal virtual
machines. When running Java programs, the name of a main class along with a classpath
has to be specified. In this case, the classpath to the JUnit library and a test which
is going to be run under the JUnitCore runner have to be specified. Listing 3.1 shows
commands used for running the Simple test under both virtual machines.

Listing 3.1: Running the JUnitCore program
$ java −cp lib/junit−4.5.jar:classes org.junit.runner.JUnitCore

cz.kebrt.unitcheck.test.Simple

$ jpf +vm.classpath=lib/junit−4.5.jar:classes
org.junit.runner.JUnitCore cz.kebrt.unitcheck.test.Simple

Note

The first attempt to run a JUnit test under JPF was not successful. As was
noted in Section 2.2.1, JPF uses its own versions of the standard Java libraries
and unfortunately, not all the functionality is implemented. Initially, there were
missing implementations for a couple methods from the java.io and java.la-

ng.reflect packages, which are used by the JUnit tool (e.g., Class.getCon-
structors()).

The missing methods were implemented in a cooperation with the JPF team. As
a result, the JUnit console runner was successfully executed under the JPF model
checker.

Running the JUnit console runner under JPF is only the first step towards the inte-
gration of JUnit and JPF. Further steps are motivated by a couple of requirements put
on the whole integrated work:

� Decoupling between the integrated tools. They cannot be hard-wired together and

3.3 Custom JUnit Runner 25

only public documented extension interfaces of these tools can be used. It allows
for easy migrating on future versions of the integrated tools.

� Extensibility of the work. In particular, the ability to easily create user interfaces
to UnitCheck.

In a nutshell, the architecture of UnitCheck was described in Section 3.1. This and
next sections show more implementation details, as well as issues that occurred while
integrating the tools. An emphasis is placed on thorough description of solutions of
problems. Alternative solutions are also discussed.

So far, only way of running JPF was presented – the jpf script acts as a replacement
for the normal java program. Additionally, JPF provides means for embedding the model
checker in third party programs. UnitChecker is the topmost class of the UnitCheck API
used by different user interfaces (see Chapter 4). Listing 3.2 shows how JPF is embedded
in UnitChecker.

1. JPF configuration is created and initialized. It accepts the same command-line
arguments as the jpf script (classpath, name of the JUnit runner class, etc.). The
configuration can be used to inject custom objects to be further accessible (e.g., in
MJI peers).

2. Same as UnitChecker is the main class of UnitCheck, JPF is the main class of Java
PathFinder. The listeners added to JPF, which monitor the state space traversal,
will be described later. After invoking the run method, JPF starts to execute JUnit
(a runner class passed as an argument to the configuration) same as the jpf script.

Listing 3.2: JPF embedded in UnitCheck

Config jpfConfig = JPF.createConfig(cmdLine);
jpfConfig.put(JPFJUNIT_LISTENER_KEY, jpfjunitListener);

JPF jpf = new JPF(jpfConfig);
jpf.addListener(jpfjunitListener);
jpf.addListener(interruptProperty);
jpf.run();

3.3 Custom JUnit Runner

As was described in the introduction, JPF explores all possible execution paths in an input
program. In order to do so, on certain program places (called transition or choice points)
JPF successively traverses more execution branches starting at these points. After one
branch has been explored and JPF backtracked to the transition point, the next branch
is traversed. When JPF reaches a program state that has already been visited, it does
not go through the state again. For further discussion, it is important to note the state
equality is checked only in the transition points.

Two scenarios will be described when the backtracking is applied on JUnit executed
under JPF. In a simple setup comprising of a class with just a single test method, the

3.3 Custom JUnit Runner 26

JPF backtracking mechanism may cause the test to finish multiple times during checking
(e.g., when the test uses more threads). From the UnitCheck point of view, it is not
very difficult to handle and report multiple finish of a single test as it will be described
later. A problem arises when a test class containing multiple tests is checked. Listing 3.3
contains a test class with two methods. The first one, the addition method, forces JPF to
successively generate two integer values into the num variable using the JPF Verify class
and to execute the rest of the test with each value. At this choice point, JPF creates two
execution branches – the first continues to execute with the value 1 in the num variable,
the second will use the value 2.

Listing 3.3: Test class using the Verify choice generator

@Test
public void addition() {

int num = Verify.getInt(1,2);
assertTrue(SimpleMath.isPositive(num));

}
@Test
public void division() {

...
}

Listing 3.4 shows how the JUnit runner (the JUnitCore class mentioned in the previous
section) executes an input test class. It runs all tests one by one – when a test method
call is finished, the next one is invoked.

Listing 3.4: JUnitCore runner

// JUnit executes tests one by one
public class JUnitCore {

public static void main(String args[]) {
TestClass testClass = getTestClass(args);
foreach (Test test : testClass) {

test.invoke();
}

}
}

When this JUnit runner is used to execute tests from Listing 3.3, the following will
happen.

1. The addition with the value 1 in the num variable is finished.

2. The division test is executed.

3. JPF backtracks to the addition method and assigns the value 2 into the num vari-
able.

4. The addition test ends for the second time. Unfortunately, this is not everything,
also the division test will be executed for the second time. This the problem which
we need to avoid because both tests are independent and thus, the division test
does not have to be invoked twice.

3.3 Custom JUnit Runner 27

Let us have a look at the situation from the JPF perspective. The right part of
Figure 3.3 illustrates what actually happens – JPF executes a part of the program in two
branches and in each of them both test methods are invoked. The reason for this is the
fact there is no potential transition point between the first test finished and the second
test started (transition points do not necessarily include method invocations). Therefore,
before the division method is executed, the equality with previously visited states is not
checked.

Figure 3.3 More tests in one JPF run

To make it clearer, the left part of the figure describes what would happen if there was
a transition point before test method invocations. The division test would be executed
in a new transition, starting in the blue state. When the test was about to run for the
second time, JPF would detect that it went through the blue state before and would not
invoke the division test for the second time. It is really true that the execution state
before the division method is invoked is always the same. The num variable, as a local
variable from the addition method, does not have any impact on the rest of test methods.

Two solutions of this problems were considered. Both have its advantages and disad-
vantages.

� Extend JPF with a custom choice generator that creates a transition point before
each test method is invoked. This would result in an ideal situation described in
Figure 3.3. The implementation of the generator requires to check every method
invocation in a program under analysis and to find out whether it is a JUnit test
method or just a common Java method. The rules for detecting a JUnit test method
are not very straightforward and differ between JUnit 3 and 4. Therefore, the
generator might notably slow down the overall unit checking process.

� Only a single test method is executed in one JPF run. Unfortunately, test runners
bundled with the JUnit tool cannot invoke just a one test method. Therefore,

3.3 Custom JUnit Runner 28

a custom JUnit runner must be implemented. Such runner does not modify any
JUnit internal code and is able to run a single test method. This runner is then
used as a replacement for the default JUnitCore which invokes all test methods
from an input test class.

The only known disadvantage of this solution is connected with the BeforeClass

and AfterClass JUnit annotations. They are used to mark methods to be invoked
only once by JUnit – either before the first test method in a class is invoked or after
the last test method is finished. When only one test method is checked in a JPF run
(i.e., the corresponding test class is constructed in every run by JPF), the methods
marked with BeforeClass and AfterClass are invoked once for each test method.
Semantically, it is correct, but the overall performance is negatively influenced. The
impact is more apparent when the before/after methods are very time-consuming.

It is important to notice that the solution was now described only from the developer
perspective. From the user perspective, of course, it does not mean that users must
check test cases method by method. Same as when running JUnit, users can specify
the whole test class to be checked . However, the underlying code runs JPF multiple
times, once for each test method.

We decided for the second approach which is easier to implement and the problem
with before/after is not so significant because these annotations are new in JUnit 4 and
not widely used among developers.

Figure 3.4 shows how the custom JUnit runner, which is capable of running single test
methods, is implemented. The arguments of the runner describe either whole test classes
to be run (using fully-qualified class names), or single test methods (using the class-
name#method-name notation)1. SingleTestRunner uses the default JUnitCore runner
for running a filtered list of test cases. According to the arguments, SingleTestFilter
filters out test methods that were not explicitly specified.

Figure 3.4 JUnit runner for running single tests

SingleTestRunner

main() : void

core : junit.JUnitCore

 SingleTestRunner.main(String[] args) {

 List<Class<?>> classes = new ArrayList<Class<?>>();

 SingleTestFilter filter = new SingleTestFilter();

 for (String arg : args) {

 classes.add(Class.forName(getClassName(arg)));

 filter.addAllowed(arg);

 }

 core.addListener(new TestReportListener());

 Request req = Request.classes(classes.toArray(new Class[0]));

 req = req.filterWith(filter);

 Result result = core.run(req);

 }

SingleTestFilter

addAllowed(arg : String) : void

allowedMethods : List
allowedClasses : List

junit.Filter

shouldRun(d : Description) : Boolean

Internally, UnitCheck analyzes a single test method by executing SingleTestRunner

under JPF. Externally, UnitCheck allows users to analyze whole test classes by applying

1 In UnitCheck, only the second way of specifying arguments is used.

3.4 Collecting Information About Test Execution 29

the previous scheme on each test method of the class. Before it can be done, a list of all
test methods within a class has to be extracted. Figure 3.5 lists UnitCheck classes that
are used to extract test methods’ names from JUnit test classes.

Figure 3.5 Extraction of test method names

<<interface>>
TestMethodExtractor

getTestMethods() : List

JUnit3TestMethodExtractor JUnit4TestMethodExtractor

<<realize>> <<realize>>

VersionDetector

getVersion(testClass : Class) : Object
getTestMethodExtractor(testClass : Class) : void

3.4 Collecting Information About Test Execution

Both JUnit and JPF can provide various information about their execution progress.
Basically, JUnit reports test failures and successes, while JPF allows to monitor the state
space traversal down to the level of individual instructions. These monitoring mechanisms
can be used to gather statistics about the execution, present results to users, etc.

In UnitCheck, JUnit tests are analyzed using the JPF model checker. Each executed
test can finish either successfully or with an error. In case of a success, it is usually
enough to know there was no uncaught exception, property violation, or other type of
failure. JUnit only reports the time it took to execute the test. On the other hand, when
the test fails, it is important to provide as much information as possible to make it easy
for developers to find the problem in the implementation that caused the test to fail.

JUnit and JPF report different kinds of errors. JUnit informs about assertion vio-
lations and other uncaught exceptions, whereas JPF notifies about property violations.
JPF generally provides more information about test failures in comparison with JUnit.
Java PathFinder gives the complete execution history leading to properties violated dur-
ing the test execution and also the state of all threads at the moment of a test failure
(thread snapshot). Therefore, the goal was to offer developers this additional information,
especially the execution history, even for errors reported by JUnit2.

To gather information about test execution, JUnit and JPF listeners are used. JU-
nit provides only one listener interface called RunListener that notifies when a test was
started and finished and whether an assertion was violated or some other exception oc-
curred. Figure 3.6 describes the listener together with all classes it uses3:

� RunListener provides a series of methods called when the execution of a test class
(methods prefixed with testRun) or a single test (methods prefixed with only run)

2 All exceptions thrown by tests are caught in a JUnit test evaluator and thus, the JPF model checker
does not know that any problem occurred.

3 For simplicity, the API provided by these classes which is not used in UnitCheck is not covered in
the figure.

3.4 Collecting Information About Test Execution 30

is started and finished. The testFailure method is called when a test fails (e.g.,
when an unexpected exception is thrown by the test).

� Description describes a test class, test suite, or a single test. The getDisplayName
method returns the textual characterization of an element described by an instance
of Description. In case of a class or suite, descriptions of child elements can be
retrieved, too.

� Failure holds the exception that caused a test failure and the description of the
corresponding test.

Figure 3.6 JUnit RunListener and related classes

<<interface>>
RunListener

testRunStarted(d : Description) : void
testRunFinished(d : Description) : void
testStarted(d : Description) : void
testFinished(d : Description) : void
testFailure(f : Failure) : void
testIgnored(d : Description) : void

Description

getDisplayName() : String
getChildren() : List
getAnnotations() : List

Failure

getDescription() : Description
getException() : ThrowableTestReportListener

<<realize>>

In UnitCheck, the implementation of RunListener is called TestReportListener

and is used to collect the information about test execution progress, especially about test
failures. An instance of TestReportListener is added to the JUnit runner as can be
seen in Figure 3.4. Section 3.5 contains more information about the implementation of
the listener.

JPF provides two different listeners. VMListener monitors the VM processing (exe-
cuting instructions, threading, manipulating objects, etc.). As the listener is not used in
UnitCheck, it will not be covered in more detail in this work. SearchListener monitors
the state space traversal and notifies about property violations which include deadlocks,
user-defined properties, etc. SearchListener and classes closely connected with the lis-
tener are depicted in Figure 3.7.

� SearchListener – the most important callback within the UnitCheck context is the
propertyViolated method.

� Search is an abstract class which is in charge of searching the state space. UnitCheck
uses it to access the JPF virtual machine and eventual errors that occurred while
searching. Each Error holds a Property whose violation caused the error.

� JVM represents the virtual machine. Besides a number of other features, it allows to
print the thread snapshot and to get the execution path starting at the initial state
up to the current state.

3.4 Collecting Information About Test Execution 31

� Path holds the list of transitions. Each Transition keeps its choice generator and
information about the thread that executed the transition. Transitions are further
composed of steps which represent single bytecode instructions. Each Instruction

object may return its line and location in the source code. The path structure, as
a whole, allows to show users the execution traces leading to errors. Depending on
the user interface, the traces can be printed on the console, displayed in a graphical
UI, etc.

Figure 3.7 JPF SearchListener and related classes

<<interface>>
SearchListener

propertyViolated(s : Search) : void
stateAdvanced(s : Search) : void
stateProcessed(s : Search) : void
stateBacktracked(s : Search) : void

Search

vm : JVM
lastError : Error

Error

getDescription() : String
getDetails() : String

prop : Property

JVM

printLiveThreadStatus() : void

path : Path

Property

getErrorMesssage() : String

Path Transition

ti : ThreadInfo
cg : ChoiceGenerator

Step

getLineString() : String
getLocationString() : String

insn : Instruction

steps

1..* 1..*

transitions

1 1..*

As was stated in Section 3.1, the UnitCheck core module is a Java library with no user
interface, different UIs are built on top of it. To allow these user interfaces (or extensions
in general) to show the reports about the test execution progress, the information provided
by that two listeners has to be exposed outside the library.

� UnitCheck provides similar notifying interface as the both integrated tools. To
prevent extensions from the detailed knowledge of JUnit and JPF listeners, one
unified listener is built on top of both. It is called UnitCheckListener and it makes
no difference between errors reported by JUnit and JPF. Section 4.1 describes the
listener from the point of extensions and how it is implemented in Eclipse plugin
and Ant task.

� To make extensions independent on JUnit and JPF, not only UnitCheckListener

is made. Even the structures provided by RunListener and SeachListener have
their simplified counterparts provided by UnitCheckListener (e.g., StepHolder).
Other reasons for these dual structures are:

– original structures, especially in JPF, are very huge and contain a lot of internal
data that do not have to be presented to UnitCheck users,

– complications with RunListener and MJI that are covered in Section 3.5,

– option to filter UnitCheck and JUnit code out of execution traces.

Instances of UnitCheckListener are notified in JPFJUnitListener. It implements
the JPF SearchListener and custom TestRunListener which is a dual interface for

3.5 JUnit as a Part of UnitCheck Input 32

JUnit RunListener (used for the same reason as the dual structures described above).
As a result, JPFJUnitListener receives all information from JPF and JUnit, combines it
together, and provides in a unified form to user interfaces through instances of UnitChe-
ckListener.

3.5 JUnit as a Part of UnitCheck Input

In the previous section, a complication with JUnit RunListener was only foreshadowed.
Now the situation behind the listener will be described in more detail along with a pro-
posed solution.

TestReportListener, implementation of the RunListener interface, is used as a
source of reports about the execution of JUnit tests under JPF. After some processing,
the reports together with the information provided by JPF are forwarded to all registered
UnitCheck listeners (see Chapter 4). So far, everything looks good and easy, but there is
a major problem with the JUnit listener – Figure 3.8 helps to better understand it.

Figure 3.8 JUnit as a part of application under test

In the figure, the UnitCheck box can represent for example the UnitCheck Eclipse
plugin. It has Java PathFinder embedded in itself. Two Java virtual machines depicted
in the figure are crucial. Internally, they are very unlike each other, they have different
object and class models, and objects created in one VM cannot be easily accessed in the
second VM. Tests to be analyzed by UnitCheck, JUnit library, and the custom JUnit
runner make up the JPF input and thus, they are all executed in the JPF VM. An
instance of TestReportListener is created by the runner within the JPF VM. On the
other hand, the rest of UnitCheck (JPF listener, UI, etc.) is executed in the host VM.
Therefore, TestReportListener is hidden for the code residing in the UnitCheck box.

In Section 2.2.1, MJI was briefly introduced. Among other things, it allows to execute
parts of applications analyzed by JPF in the host VM instead of JPF VM. When it is
applied on TestReportListener, UnitCheck will be able to touch the listener and collect
information it provides. The details of this solution are described below.

3.5.1 MJI Applied on JUnit Listener

Model Java Interface (MJI) is very similar to Java Native Interface (JNI) as depicted in
Figure 3.94. JNI is used to delegate execution from the Java level (or bytecode in other

4 Figure taken from http://javapathfinder.sourceforge.net.

http://javapathfinder.sourceforge.net

3.5 JUnit as a Part of UnitCheck Input 33

words) down to the native layer which is the machine code. By analogy, MJI is used to
delegate execution from the bytecode controlled by JPF down to the host virtual machine,
down to the Java layer.

That exactly matches the situation with TestReportListener. Although the listener
is a part of modeled classes, there is a need to interact with it from the Java layer. This
is the reason why the listener is implemented using MJI, which moves the execution layer
of this listener from the model one down to the Java layer. As a result of this solution,
it is possible to collect and process results from both JUnit and JPF listeners in the Java
layer.

Figure 3.9 Model Java Interface

The code executed in the host VM using MJI is split in two types of classes residing
in different layers.

� Model classes are executed in the JPF VM. Methods that are to be invoked in the
host VM are marked as native.

� Native peer classes implement native methods of corresponding model classes. They
are always executed within the host VM.

Listing 3.5 shows a piece of TestReportListener model class. For each overriden
method, there is another method marked as native that is executed by the corresponding
native peer class. There are two reasons for a pair of methods:

� it easier to access arguments of basic data types (strings, integers, etc.) in the peer,

� internal structure of objects passed in arguments has to be known in order to access
their fields.

3.5 JUnit as a Part of UnitCheck Input 34

Listing 3.5: TestReportListener model class

public class TestReportListener extends RunListener {
@Override
public void testRunStarted(Description description) {
testRunStartedNative(description.getDisplayName());

}
public native void testRunStartedNative(String description);

}

The corresponding native peer class is located in 3.6. A special name mangling scheme
combining the original package and class name is used for peer classes. Implementations
of native methods have to be public static, arguments are translated into integer handles,
and two special arguments added.

MJIEnv allows to access (read, write) JPF controlled objects using the handles. Some
other JPF structures (e.g., configuration, virtual machine) are also accessible via MJIE-

nv. The rObj argument is a handle for the corresponding JPF this object (in this case,
an instance of TestReportListener). From the peer, TestRunListener injected in the
configuration (see 3.2) is finally notified.

Listing 3.6: TestReportListener native peer class

public class JPF_cz_kebrt_unitcheck_junit_TestReportListener {
public static void testRunStartedNative(MJIEnv env,

int rObj, int rDesc) {
getListener(env).testRunStarted(

new Description(env.getStringObject(rDesc)));
}
private static TestRunListener getListener(MJIEnv env) {
return (TestRunListener) env.getConfig().get(

UnitChecker.JPFJUNIT_LISTENER_KEY);
}

3.5.2 JUnit – Perfect Exception Firewall

JUnit catches all exceptions thrown by the code under test and decides whether it was
ok to throw such an exception or not5. No exception leaves the JUnit runner, and there-
fore, JPF never detects the violation of uncaught exception property and cannot report
execution history leading to the exception. For JPF, it simply looks the program finished
successfully.

To provide users with complete execution histories even for exceptions reported by
JUnit, Model Java Interface is used again. In the native peer of the JUnit listener, the
Path object, describing the execution from the initial state up to the current one, can
be read from the MJIEnv object. The situation with JUnit exceptions is depicted in
Figure 3.10 which also serves as an example of what was presented above.

A simplified version of the JUnit runner invokes a test according to arguments passed
to the runner. The assertion for integer equality does not hold in the test. The figure shows

5 When a test method is annotated with @Test(expected=...), JUnit evaluates the test as failed
only when the particular exception is not thrown.

3.5 JUnit as a Part of UnitCheck Input 35

execution layers in which the assertion exception is handled. First, an object describing the
exception is created and passed into the listener. The testFailure method, implemented
in the native peer class, receives handles to all arguments of the original method and uses
them to read the original values. We see a handle to an object that wraps the test
method description and the assertion exception. With such a solution, TestRunListener
is notified about the test failure – information about the exception is a combined with the
execution history.

Figure 3.10 Model Java Interface – concrete example

This was not the only problem related to JUnit as a perfect exception firewall. Sup-
pose that a test finished with an assertion error. Nevertheless, from the JPF point of
view, nothing happened and if there are some unexplored states, JPF will backtrack and
continue to analyze the test. However, developers usually want only the first error to be
reported and to stop the checking afterwards. This can be achieved by implementing a
custom JPF property that is violated after the first error occurrs. Before JPF backtracks,
it checks the state of all properties. If any is violated, JPF stops the analysis6.

Properties in JPF are actually implemented as listeners. They usually extend Prop-

ertyListenerAdapter which is a combination of all JPF listeners (VMListener, Searc-
hListener, PublisherExtension, Property) with empty implementations. StopExecu-
tionProperty, used for stopping JPF7, is not a typical example of a property. It does
not track JPF execution using listeners, but it only implements the minimal property

6 By default, JPF is configured to stop when a JPF property is violated (search.multiple_errors
configuration property).

7 JPF is stopped when an exception is reported by JUnit or when a user asks UnitCheck to stop
execution (e.g., by clicking a button in the Eclipse plugin).

3.5 JUnit as a Part of UnitCheck Input 36

interface. The most important method in Listing 3.7 is the check method which returns
true when a property signals its violation. The state of the property is modified by calling
the stop method from outside.

Listing 3.7: StopExecutionProperty is used to stop JPF

public class StopExecutionProperty extends PropertyListenerAdapter {
private boolean stopped = false;
private String message = null;

@Override
public boolean check(Search search, JVM vm) { return !stopped; }
@Override
public String getErrorMessage() { return message; }

public void stop(String message) {
this.message = message;
stopped = true;

}
}

4 UnitCheck in 3rd Party Programs 37

Chapter 4

UnitCheck in 3rd Party Programs

Up to now, only the implementation of the UnitCheck core was presented. To bring the
unit checking capabilities to developers, a user interface for UnitCheck has to be created.
Section 4.1 lists the most important concepts that allow to embed UnitCheck in a third
party tool. Implementations of two user interfaces for running UnitCheck, Ant task and
Eclipse plugin, are demonstrated in Section 4.2 and Section 4.3.

4.1 Introduction

This section describes what needs to be done in order to embed UnitCheck in a third
party application. Figure 4.1 shows the most important parts of the UnitCheck’s external
interface.

UnitChecker
The topmost class of the whole tool. It is initialized with a configuration specifying
a set of unit tests for checking. Two methods for running and interrupting the
checking process are provided. Interruption can be used for example in an IDE
plugin when a user clicks a stop button.

Config
Represents configuration for one run of the UnitChecker class. One or more JUnit
test classes (or even single methods) along with their classpath must be specified.
JPF properties may be overridden here and a couple of other attributes can also be
set (e.g., filtering of UnitCheck traces in error reports).

UnitCheckListener
The listener provides a mechanism for reporting what is happening in the checking
process. Four callbacks must be implemented. Each of them identifies a test method
and provides the results collected while checking the test method. The callbacks
whose name start with checkRun are used when the checking of a test method is
started or completely finished. The checkFinished callback is invoked every time
a particular test method is finished.1

1 Each test method may finish a number of times because JPF explores all possible execution paths.

4.1 Introduction 38

CheckResult, Failure, Success
The checking of a test method may finish with a failure or successfully. In case of
a failure more information is supplied to make the debugging easier. The complete
execution path that led to the failure is provided. The PathHolder class represents
quite a large but not complicated path structure and thus will not be covered in
this text. Additionally the snapshot of all threads is also available.

PropertyFailure, ExceptionFailure
Two concrete types of failures exist. Those that are caused by uncaught exceptions
and those that are results of violated JPF properties.

CheckRunResult
Summarizes the results of checking one test method. The checksCount attribute
counts how many times the method finished (in other words how many times the
checkFinished callback was invoked for the test method). The list of failures
collected during the checking is either empty (in case of overall success) or contains
exactly one failure (UnitCheck is usually configured to stop checking after the first
test failure is encountered).

Figure 4.1 UnitCheck external interface

<<interface>>
UnitCheckListener

checkRunStarted(tm : TestMethod) : void
checkRunFinished(tm : TestMethod,res : CheckRunResult) : void
checkRunInterrupted(tm : TestMethod,res : CheckRunResult) : void
checkFinished(tm : TestMethod,res : CheckResult) : void

<<interface>>
CheckResult

isSuccessful() : Boolean

SuccessFailure

getDescription() : String
getPath() : Object
getSnapshot() : String

ExceptionFailure

getException() : void
getMessage() : String

ProperyFailure

getDetails() : String

UnitChecker

addListener() : void
run() : void
interrupt() : void

config : Config

<<realize>><<realize>>

TestMethod

getClassName() : String
getMethodName() : String

CheckRunResult

isSuccessful() : Boolean
getChecksCount() : Integer
getFailures() : List
isInterrupted() : Boolean

1

0..*

0..*

0..*

Config
0..* 1

The procedure of creating a new user interface to UnitCheck (e.g., an IDE plugin)
usually consists of the following steps.

1. Create a user interface for configuring UnitCheck so that the Config class can be
correctly filled.

2. Implement UnitCheckListener which will display provided results in a user friendly
way.

3. Instantiate the UnitChecker class with a configuration and call the run method.

4.2 Ant Task 39

4.2 Ant Task

The UnitCheck task brings a support for unit checking in Ant [2], a very popular tool
used in the Java software development. A short Example 4.1 shows how to use the task
in a build file. This example will help us to better understand the concepts used in the
implementation. The most important parts of the task are depicted in Figure 4.2.

The UnitCheckTask class represents the core of the task. As well as other Ant tasks
it extends the Task base class and overrides methods for initialization and execution. For
each task’s attribute a setter method, whose name begins with set followed by attribute
name, must be provided. For each nested element a class representing the element (with
the same rules for attributes as the root element) must be implemented. Also a cre-

ate method returning an instance of such a class must be implemented in the parent
class. In Figure 4.2 it is the case of the SingleTest (test element) and JPFProperty

(jpfproperty element) classes.

Example 4.1 UnitCheck task usage

<unitcheck
basedir="${unitcheck.task.dir}"> <test
class="daisy.unittest.CreatFileTest" method="testCreatLongFilename"
/> </unitcheck>

When the unitcheck element appears in an Ant target that is executed, Ant does the
following steps.

1. An instance of the UnitCheckTask class is created and the init method is called.

2. For each nested element the corresponding create method is invoked.

3. All attributes of this task get set via their corresponding set methods.

4. All attributes of all nested elements get set via their corresponding set methods.

5. The execute method is called.

Typical scenario described in the introduction of this chapter is then performed in the
execute method. A configuration is created from data collected in previous steps. A
listener2 that prints results on the standard output is then passed to the UnitChecker

instance and finally the run method is executed.

2 ConsoleUnitCheckListener implements the UnitCheckListener interface and used also in the
command-line application and Eclipse plugin.

4.3 Eclipse Plugin 40

Figure 4.2 UnitCheck task UML diagram

UnitCheck Ant task

UnitCheckTask

init() : void
execute() : void
setBaseDir(dir : String) : void
setPrintPath(print : Boolean) : void
createTest() : SingleTest
createJPFProperty() : JPFProperty
getConfig() : void

baseDir : String
printPath : Boolean
singleTests : List
jpfProps : List

org.apache.tools.ant.Task

init() : void
execute() : void

<<signal>>
org.apache.tools.ant.BuildException

SingleTest

klass : String
method : String

JPFProperty

key : String
value : String

1 0..*

1
0..*

 UnitCheckAntTask.execute() {

 try {

 Config config = getConfig();

 PathPrinter.Config pathConfig =

 new PathPrinter.Config(...);

 UnitChecker uc = new UnitChecker(config);

 uc.addListener(new ConsoleUnitCheckListener(

 System.out, pathConfig));

 uc.run();

 } catch (ConfigException e) {

 throw new BuildException(e.getMessage());

 }

 }

4.3 Eclipse Plugin

The UnitCheck plugin allows for unit checking within the Eclipse IDE. The plugin uses
and extends a lot of standard Eclipse solutions to make its usage intuitive and convenient.
It includes Eclipse views, launch configurations, launch shortcuts, a preference page, and
other Eclipse concepts thoroughly described in [33].

4.3.1 Structure of the Plugin

Since Eclipse runs on Equinox [9], which is an OSGi container [15], there have always
been arguments whether the word plugin should be used for the same thing as the word
bundle from OSGi specifications (bundle is a package of code that runs under an OSGi
container). In this work, the word plugin is used because it is more widespread among
the Eclipse community.

Each plugin has a form of a JAR file containing

� plugin’s code (class files),

� resources (icons, help, localization),

� MANIFEST.MF (plugin manifest)

� plugin.xml (describes extension points).

4.3 Eclipse Plugin 41

The plugin characteristics are described in a manifest file (Listing 4.1 shows some of
them for the UnitCheck plugin) and used by an OSGi run-time. A separate classloader is
created for each plugin and thus, the dependencies on other plugins and JAR files must
be specified in the manifest.

Listing 4.1: UnitCheck MANIFEST.MF file

Manifest−Version: 1.0
Bundle−Name: Unitcheck Eclipse Plug−in
Bundle−Version: 1.0.12
Bundle−Activator: cz.kebrt.unitcheck.eclipse.UnitCheckPlugin
Require−Bundle: org.eclipse.ui,
org.eclipse.core.runtime,
org.eclipse.jdt.core;bundle−version="3.4.2",
org.eclipse.core.resources;bundle−version="3.4.1",
org.eclipse.jdt.launching;bundle−version="3.4.1"

Bundle−ClassPath: .,
jars/jpf.jar,
jars/junit−4.5.jar

Prior to version Eclipse 3.0, the contents of MANIFEST.MF files was included in plu-

gin.xml files. After migrating to the OSGi architecture, the only Eclipse-specific prop-
erties left are extension points and extensions. The idea of extensions is very universal
and is used for a variety of features in Eclipse. A plugin describes an extension point,
an abstract implementation of some general feature, using the extension-point element
in its plugin.xml file. The extension point specifies what every concrete implementation
(extension) needs to provide and implement.

Eclipse views are a nice example of an extension point. Listing 4.2 contains a piece of
the UnitCheck plugin.xml file describing the plugin’s views. As specified by the org.ec-
lipse.ui plugin, each view must provide a window icon, name and a class implementing
the org.eclipse.ui.IViewPart interface.

Listing 4.2: UnitCheck plugin.xml file

<?xml version="1.0" encoding="UTF−8"?>
<?eclipse version="3.2"?>
<plugin>

<extension point="org.eclipse.ui.views">
<category id="cz.kebrt.unitcheck.eclipse"

name="%view.category.title" />
<view category="cz.kebrt.unitcheck.eclipse"

class="cz.kebrt.unitcheck.eclipse.tree.ResultTreeView"
icon="icons/check.gif"
id="cz.kebrt.unitcheck.eclipse.views.ResultTreeView"
name="%view.results.title" />

</extension>
</plugin>

In Listing 4.1, the UnitCheckPlugin class is given as an activator. During the startup,
the activator is the first plugin’s class instantiated by Eclipse. It allows to keep the
plugin’s lifecycle under control using the start and stop methods. This not the case
of the UnitCheck plugin, which does not hold any resources like database connections or

4.3 Eclipse Plugin 42

files which need to be closed at exit. Therefore, this class is used only for initialization of
default values in the preferences.

4.3.2 Running the Checking Process

The steps necessary to incorporate UnitCheck in other applications were described in
previous sections. In case of the Eclipse plugin, the procedure is more complicated than
in the Ant task but the idea remains same. Figure 4.3 shows where the UnitChecker

class, the main entry point to UnitCheck, is instantiated. In the centre of the figure, there
is the UnitCheckEclipseRunner class which runs the UnitChecker instance. The runner
is initialized with

� an Eclipse configuration either coming from a launch configuration dialog or auto-
matically created by a launch shortcut,

� a result view used for displaying the progress of checking,

� a set of listeners that are notified when the checking is started and finished.

The checking is started by RunContext which remembers the instance of UnitCheck-
EclipseRunner to be able to stop or rerun the latest checking process. Two UnitCheck
listeners are created and passed to UnitChecker:

� ConsoleUnitCheckListener uses the stream provided by the Console plugin to
print the results in the Eclipse console.

� EclipseUnitCheckListener provides the result view with the output of checking.

Figure 4.3 Running UnitCheck within the plugin

RunContext

run() : void
rerun() : void
stop() : void

<<interface>>
LaunchListener

launchStarted() : void
launchFinished() : void

EclipseUnitCheckRunner

run() : void

uc : UnitChecker
conf : eclipse.ILaunchConfiguration
view : ResultTreeView

1 1

1
0..*

 EclipseUnitCheckRunner.run() {

 // notify listeners - launchStarted()

 MessageConsole cons = new MessageConsole();

 ConsolePlugin.getDefault().add(cons);

 uc = new UnitChecker(createUnitCheckConfig(conf));

 uc.addListener(new EclipseUnitCheckListener(view));

 uc.addListener(new ConsoleUnitCheckListener(

 cons.getStream()));

 uc.run();

 // notify listeners - launchFinished()

 }

So far, the way of using UnitChecker was described from the internal point of view.
Eclipse provides launch configurations and launch shortcuts to allow users to run external
programs within the IDE. The configurations can be edited in dialogs, saved, and reused
later. The shortcuts allow to run external programs quickly, without a chance to modify
default settings, just by selecting a resource and an item in the run menu. In order to use
both of these concepts, the following extension points must be implemented in a plugin.

4.3 Eclipse Plugin 43

� org.eclipse.debug.core.launchConfigurationTypes – defines a new type of
launch configuration and a delegate (implementation of ILaunchConfiguration-

Delegate) that is used for running these configurations.

� org.eclipse.debug.ui.launchConfigurationTypeImages – assigns an icon to a
configuration type.

� org.eclipse.debug.ui.launchConfigurationTabGroups – assigns a graphic dia-
log (implementation of ILaunchConfigurationTabGroup) to a configuration type.

� org.eclipse.debug.ui.launchShortcuts – assigns a shortcut (implementation of
ILaunchShortcut) to a configuration type and defines rules for displaying an item
in the run menu.

Figure 4.4 shows concrete implementations of some of the extension points mentioned
above. UnitCheckLaunchConfigurationDelegate extends the abstract class, which is
useful for delegates that run Java programs (which is the case of UnitCheck and JPF)
because it allows for easy manipulation with classpaths. The only method left for imple-
mentation is the launch method, which is invoked by Eclipse when a user runs UnitCheck
with a certain configuration. The method creates a new runner (UnitCheckEclipseRun-
ner described before) and uses RunContext to run it.

Figure 4.4 Launch delegate and launch shortcut

UnitCheckLaunchConfigurationDelegate

eclipse.AbstractJavaLaunchConfigurationDelegate

launch() : void

 UnitCheckLaunchConfigurationDelegate.launch(

 ILaunchConfiguration configuration, String mode,

 ILaunch launch, IProgressMonitor monitor)

 {

 ResultTreeView view = ViewRegistry.showView(ResultTreeView.ID);

 EclipseUnitCheckRunner runner = new EclipseUnitCheckRunner(

 view, configuration, launch, getClasspath(configuration));

 RunContext.get().run(runner);

 }

eclipse.AbstractLaunchShortcut

launch() : void
getConfigurationTypeName() : String
initializeConfiguration() : void
isGoodMatch() : Boolean
findLaunchConfiguration() : Object

UnitCheckLaunchShortcut

 UnitCheckLaunchShortcut.launch(

 ISelection sel, String mode)

 {

 // prepare configuration data ...

 ILaunchConfiguration configuration =

 findLaunchConfiguration(mode);

 configuration.launch(mode, null);

 }

The situation with UnitCheckLaunchShortcut is very similar, it extends the class
with four abstract methods.

� getConfigurationTypeName() – returns the identifier of a configuration type as
was defined in the plugin.xml file.

� isGoodMatch(ILaunchConfiguration c) – decides whether an existing configura-
tion can be used by the launch shortcut (based on what a user selected to run).

4.3 Eclipse Plugin 44

� initializeConfiguration(ILaunchConfigurationWC c) – initializes a new con-
figuration (used when no existing suitable configuration was found).

� launch(ISelection s, String mode) – the entry point to the shortcut. First, it
finds an existing configuration or creates a new one using the previous methods.
Afterwards, the configuration is launched which subsequently launches the corre-
sponding delegate (UnitCheckLaunchConfigurationDelegate).

The UnitCheckLaunchConfigurationTabGroup class is an extension that creates a
dialog for editing UnitCheck configurations. The dialog comprises of a set of tabs, most
of them are standard tabs provided by the org.eclipse.ui.debug plugin (e.g., for setting
up a classpath and sourcepath).

4.3.3 GUI – Views and Preference Page

Eclipse uses Standard Widget Toolkit (SWT) [18] for making up the graphic user interface.
SWT is a Java toolkit that uses native objects (e.g. GTK+ objects) which is in contrast
to Swing that draws its own widgets. As a result, SWT applications always keep the look
of the host system.

JFace [12] is a set of helper classes that make the life with SWT easier for a program-
mer. It provides viewers for displaying, sorting, and filtering plain Java objects in list
views and tree views. JFace also allows to implement actions and assign them to menu
items and buttons. When using JFace, programmers do not have to solve low-level UI
problems but they can concentrate on the actual functionality.

The UnitCheck plugin provides two views, implementations of the org.eclipse.-

ui.views extension point described at the beginning of the section. The result tree
view (ResultTreeView) presents the tree of test classes and test methods checked in the
latest run of the plugin. The path view (PathView) shows detailed information about the
selected test method. Both views extend the ViewPart abstract class with three important
methods:

� createPartControl(Composite parent) – receives the parent UI object, creates
the UI of the view (buttons, labels, viewers, layout, . . .), and assigns actions to the
view’s toolbar.

� setFocus() – called when the view receives the focus.

� dispose() – called when the view is disposed, the necessary cleanup is performed
here.

The views are accessed on multiple places of the plugin’s code. The ViewRegistry

class is used to make the access easier. It provides methods for

� registering newly created instances of the view classes,

� getting existing instances of the view classes,

4.3 Eclipse Plugin 45

� adding and removing listeners, which are called when a new instance of a particular
view is registered.

Besides the views and the launch configuration dialog, the plugin creates one more
GUI item – the preference page which is a standard Eclipse solution for setting global
plugin’s preferences. The page is an extension of the org.eclipse.ui.preferencePages

extension point and is implemented in the UnitCheckPreferencePage class.

4.3.4 Displaying Results of Checking

The previous section described the views in general. Now the focus will be given on how
the results of checking are displayed in the views. The first is ResultTreeView (Figure 4.5)
which is split into two parts – ResultTree contains the tree of checked test classes and
test methods, ResultPanel shows the summary of results for the selected test method
and buttons for displaying more detailed information (e.g., an exception stack trace).

ResultTree uses JFace TreeViewer to display the tree of results. Each viewer needs
a content provider which populates it with data and a label provider which returns label
and icon for each item in the viewer. In this particular case, the ResultTreeContentPr-

ovider class is filled with checking results by UnitCheckEclipseListener. The content
provider transforms the data provided by the listener into its own representation suitable
for the tree viewer:

� ResultTreeItem – abstract class representing the tree character of a node (parent
node, list of child nodes). It also holds the corresponding Eclipse reference to a Java
class or method.

� TestClassItem – represents a test class.

� TestMethodItem – represents the test method and holds the checking result for the
method.

4.3 Eclipse Plugin 46

Figure 4.5 ResultTreeView – the summary of checking results

ResultTree

previousState : State
tree : eclipse.TreeViewer
prov: ResultTreeContentProvider

<<interface>>
ResultTreeListener

doubleClick(i : ResultTreeItem) : void
selectionChanged(i : ResultTreeItem) : void

ResultTreeItem

children : List
parent : ResultTreeItem
name : String
element : eclipse.IJavaElement

eclipse.ViewPart

createPartControl() : void
setFocus() : void
dispose() : void

ResultTreeView

ResultPanel

res : CheckRunResult
cons : StackTraceConsole

1
1

1

1
notifies

<<realize>>

TestClassItem

containsError() : Boolean

TestMethodItem

res : CheckRunResult

ResultTree ResultPanel
User Interface

(can also be stacked vertically)

The tree also keeps its previous state of expanded and collapsed nodes, so that after
rerunning the latest launch configuration, the tree looks same. Other components of the
plugin may register themselves with the result tree to be notified when an item in the tree
is selected and double-clicked. As an example, ResultTreeView implements the ResultT-
reeListener and opens the Eclipse Java editor when an item in the tree is double-clicked.

ResultPanel is not very complicated class. A nice feature is the ability to print
the detailed information about errors found during checking to the Eclipse Stack Trace
Console. As a consequence, users can see highlighted stack traces and execution histories,
which are clickable and open the corresponding code locations in the Java editor.

The second view is useful only when an error was found while checking a test method.
It shows the complete execution path leading to the error (the term execution history is
often used, too). The path is split into transitions which are pieces of code executed
by each thread. Figure 4.6 shows the structure of the view, it is composed of three
components:

� TransitionTable – shows a list of transitions in a grid3. Same as other JFace
viewers, the grid employs a label and content provider to display the transitions. Tr-
ansitionTable notifies other components of the plugin when a transition is selected.

� TransitionDetail – shows detailed information about the selected transition.

� JavaStrackTraceConsoleViewer – uses JavaStrackTraceConsole to print the code
executed in the selected transition.

3 GridTableViewer, which is a part of the Nebula project [14], is used. Soon, it will be merged in
JFace.

4.3 Eclipse Plugin 47

Figure 4.6 PathView – details of found errors

TransitionDetail

eclipse.ViewPart

createPartControl() : void
setFocus() : void
dispose() : void

PathView

viewer : eclipse.JavaStackTraceConsoleViewer
find : eclipse.FindReplaceAction

TransitionTable

grid : GridTableViewer

1

1

1 1

<<interface>>
TransitionTableListener

selectionChanged(transtionHolder : Object) : void

notifies

<<realize>>
<<realize>>

TranstionTable

TranstionDetail

JavaStackTraceConsoleViewer

User Interface

To search the code listing printed in the console viewer, the FindReplaceAction class
from the org.eclipse.ui plugin is used.

4.3.5 Distribution

Eclipse uses the concept of plugins, features, and update sites for distribution and instal-
lation of contributions.

Plugin
This is the basic building block in the Eclipse platform. Plugin is a package of code
and resources that together form a piece of functionality. As an example, everything
we have seen so far forms one plugin.

Feature
In some situations, it is useful to split the functionality into a couple of plugins that
work together. Such fine-grained plugins then expose extension points that are used
by other plugins. It allows to reuse the plugins and replace them with alternative
implementations. More plugins can together form a feature which is distributed,
installed, and updated as a complex unit. The feature.xml file lists a collection of
plugins that belong to the feature and describes the feature (license, copyright).

Update site
Update sites allow to deploy features on client machines. Each site is described in
the site.xml file which lists all the features that can be installed using the site.
The features and corresponding plugins are located in the plugins and features

directories in the form of JAR files. Update sites can be remote (features are installed
over HTTP) or local (features are installed from a local directory or a ZIP file).

4.3 Eclipse Plugin 48

Currently, UnitCheck consists of only one plugin. A possibility of splitting it into more
plugins was also considered. The plugin could be broken into two basic parts, the UI and
non-UI part, which would allow to build an alternative user interfaces for UnitCheck.
Moreover, the UI part could be further split into more general parts, which would enable
to use the same UI also for a simple JPF plugin (with no JUnit employed). For simplicity,
a decision was made to start with only one plugin.

The single UnitCheck plugin is included in a feature, which can be installed both
remotely and locally.

5 Case Study 49

Chapter 5

Case Study

This chapter presents how UnitCheck can be used for checking correctness of a few features
in a small application. Emphasis is given on the description of benefits which UnitCheck
brings in the verification process of the application. The test suite comprises of a set of
JUnit test cases and custom JPF properties that together form the input of the UnitCheck
tool. In this text, two JUnit test cases and one custom property are thoroughly described.

5.1 Daisy Filesystem

The Daisy filesystem [8] is used as an example of an application that can be successfully
checked with the tools described in the previous chapter. It is important to note that
Daisy is not a real world filesystem. Initially, it was used as an input program in a contest
for different testing and validating tools (Java PathFinder, Bandera, etc.). This is also the
reason why the filesystem intentionally contains a bunch of bugs that were to be detected
using various techniques including model checking and run-time analysis. The filesystem
is highly concurrent so the tools especially have to prove their abilities when dealing with
concurrent applications.

Daisy meets both preconditions put on programs that can be checked with the UnitCheck
tool – it is written in Java and it is not very large, just 1KLOC. A number of JUnit 4 test
cases and JPF properties were written that test all important filesystem calls and try to
find as many errors as possible in the implementation.

5.2 Testing Environment

Daisy has a form of a Java library that can be embedded in other Java applications. To
create a testing environment, the filesystem is embedded in each JUnit test case through
the common base class AbstractDaisyTest (Listing 5.1). The class is in charge of the
filesystem initialization performed in the init method, which is marked with the JUnit
Before annotation. Therefore, it is invoked by JUnit before any test method is called.

Each concrete test case contains one or more methods, marked with the JUnit Test

annotation, that perform a particular test of a Daisy component or feature. Such JUnit

5.2 Testing Environment 50

tests can be run directly using a JUnit runner or in a JUnit IDE plugin. The chance of
locating bugs in a concurrent environment increases a lot when unit checking, provided
by UnitCheck, is employed for the verification of Daisy. UnitCheck analyzes all thread
interleavings applicable in each test.

Listing 5.1: Common base for all Daisy tests

/** Abstract class for all Daisy tests. The class provides tests

* with filesystem initialization and a few member fields that

* are commonly used in test cases. */
public abstract class AbstractDaisyTest {

protected FileHandle root = new FileHandle();
protected FileHandle fh = new FileHandle();
protected Attribute a = new Attribute();

// Run automatically by JUnit before any test method is called.
@Before
public void init() {
root.inodenum = 0;
Petal.init(false);
System.out.println("Disk contents:");
Daisy.dumpDisk();

}
}

An example of a simple JUnit test case follows. A more complicated test case is
described in the next section. Listing 5.2 shows a piece of the test that is part of the
original Daisy package. The goal of the test is to call basic filesystem methods for creating,
deleting, and writing files. After each operation is finished, the filesystem contents is
printed to check whether the operation was successful or not. For simplicity, deleting and
writing was omitted from the example.

Listing 5.2: Simple Daisy test

/** Original test shipped with Daisy distribution. */
public class OriginalTest extends AbstractDaisyTest {

@Test
public void test() {
System.out.println("Creating file named cow in root:");
DaisyDir.creat(root, DaisyTest.stringToBytes("cow"), root);
System.out.println("Return code: "

+ DaisyDir.creat(root, stringToBytes("cow"), fh));
System.out.println("Returned file handle: " + fh);
System.out.println("Disk contents:");
Daisy.dumpDisk();

}
}

Java Pathfinder, which provides UnitCheck with the model checking capability, allows
to implement custom properties that must hold in an errorless program. In other words,
a violation of a property indicates a bug in the program. When it happens, UnitCheck
provides a complete execution history leading to the violation. Some features of the
filesystem implementation are too complicated to be tested by traditional JUnit tests.
In such case, JPF properties, which allow to track every detail of the test execution,

5.3 Complex Test Case 51

are implemented and JUnit tests provide an environment for checking validity of these
properties in Daisy.

5.3 Complex Test Case

A couple of Daisy properties, which should be checked by the tools used for the verification
of Daisy, were proposed in [8]:

� Correct usage of locks. Each thread should acquire and release each lock in a strict
alternation.

� Deadlock freedom. Prove that locks are acquired by threads according to a global
partial order.

� Invariants on data structures of the file system. If an allocated inode points to a
block, then that block must be allocated as well, etc.

The first property was selected for demonstrating the power of the UnitCheck tool.
First, it is important to make clear what the property allows and what not. Figure 5.1
shows sequences of lock operations1 that are allowed and forbidden assuming that in each
row, the first operation from left is also the first acq/rel operation called within an
instance of the Daisy filesystem.

Figure 5.1 Daisy lock sequences – allowed and forbidden

To check the property with UnitCheck, two steps have to be done.

1. A JPF property is implemented. It monitors every invocation of the LockManager

acq/rel methods and reports a failure when a forbidden sequence appears in some
thread.

2. A series of JUnit tests is written to simulate situations where LockManager is ex-
tensively called.

1 acq(long n) acquires the lock number n; rel(long n) releases the lock number n.

5.3 Complex Test Case 52

In order to check the alternation of lock operations, the property stores the state of all
locks for each thread – whether they have been acquired or released in the thread. What
causes a complication is the JPF backtracking mechanism illustrated in Figure 5.2.

Let us suppose that UnitCheck, while analyzing the Daisy filesystem, reaches the state
A in which a transition point is created with two branches. The thread number 1 has the
locks 6, 8, 9 acquired in the state A. Before the state B is reached by the transition from
A, one more lock number 12 is acquired by the same thread and this information is stored
in the property. After backtracking into the state A, we are no more interested in what
happened with the locks on the transition to the state B. The state of all locks has to
be restored so that the transition to the state C starts with the same information as the
transition to the state B started. Therefore, the property manages a log about acquired
and released locks. The information is kept in a stack and when JPF backtracks, the stack
is used for rollbacking the states of the locks that are no longer acquired or released.

Figure 5.2 Restoring lock information when backtracking

Listing 5.3 shows the implementation of the property described in previous paragraphs
(technical details were omitted). The property uses a convenient JPF mechanism for
creating properties called PropertyListenerAdapter which combines JPF listeners with
a property interface. The most important are three overridden methods – stateAdv-

anced and stateBacktracked are in charge of keeping the log of lock operations as it
was described above. The instructionExecuted method monitors the invocations of
the acq/rel methods and checks whether each lock is acquired and released in a strict
alternation.

Listing 5.3: Testing environment for checking the LockOrderProperty

/** Property testing acq/rel invocation sequences. */
public class LockOrderProperty extends PropertyListenerAdapter {

private static final String LOCK_ACQ_METHOD = "LockManager.acq";
private static final String LOCK_REL_METHOD = "LockManager.rel";
private static final String LOCK_NO_ARGUMENT = "lockno";

private LockData locks = new LockData();

@Override
public void instructionExecuted(JVM vm) {

5.3 Complex Test Case 53

Instruction instr = vm.getLastInstruction();
ThreadInfo ti = vm.getLastThreadInfo();
if (instr instanceof InvokeInstruction) {

if (LOCK_ACQ_METHOD.equals(getMethodName(instr))) {
Long lock = instr.getArgumentValue(LOCK_NO_ARGUMENT, ti);
checkLockAcq(ti.getIndex(), lock);

} else if (LOCK_REL_METHOD.equals(getMethodName(instr))) {
Long lock = instr.getArgumentValue(LOCK_NO_ARGUMENT, ti);
checkLockRel(ti.getIndex(), lock);

}
}

}

@Override
public void stateAdvanced(Search search) {
locks.stateAdvanced(search.getStateNumber());

}

@Override
public void stateBacktracked(Search search) {
locks.stateRestored(search.getStateNumber());

}

private void checkLockAcq(int threadIndex, long lock) {
if (locks.isLocked(threadIndex, lock)) {

// report violation!
}
locks.lockAcq(threadIndex, lock);

}

private void checkLockRel(int threadIndex, long lock) { ... }

/** Represents a single invoked lock operation (acq, rel). */
private static class LockOperation {
protected enum OP { ACQ, REL };
protected final OP op;
protected final int thread;
protected final long lock;

}

/** Stores the current state of locks. */
private static class LockData {
/** State of locks for each thread (key=threadIndex). */
private Map<Integer, Set<Long>> lockStates;
/** History of acq/rel/stateAdvanced events. */
private Stack<Object> history;

public boolean isLocked(int thread, long lock) { ... }

public void lockAcq(int thread, long lock) {
getLockStates(thread).add(lock);
history.push(new LockOperation(LockOperation.OP.ACQ,

thread, lock));
}

public void lockRel(int thread, long lock) { ... }

5.3 Complex Test Case 54

public void stateAdvanced(Integer state) {
history.push(state);

}

public void stateRestored(Integer state) {
while (!history.isEmpty()) {

Object last = history.peek();
if (last instanceof Integer) {

if (last.equals(state)) {
break; // leave while

}
} else if (last instanceof LockOperation) {

LockOperation op = (LockOperation) last;
switch (op.op) {
case ACQ:

getLockStates(op.thread).remove(op.lock);
break;

case REL:
getLockStates(op.thread).add(op.lock);
break;

}
}
history.pop();

}
}

}
}

Listing 5.4 contains one of test cases that may serve as a testing environment for
checking the validity of LockOrderProperty. This test case focuses on testing the Dais-

yDir.creat method in different situations.

1. testCreatFile creates a single file.

2. testCreatFileThreads creates more files in a couple of threads. All thread inter-
leavings are analyzed by UnitCheck.

3. testCreatLongFilename creates a long filename.

It is the only test within the test case that violates LockOrderProperty. Daisy
allows to create filenames up to 256 characters, otherwise it throws an exception.
The lock acquired in the first creat call is not correctly released on error. Therefore,
UnitCheck reports a violation of the property when Daisy tries to acquire the same
lock again in the second creat call.

Listing 5.4: JUnit test violating LockOrderProperty

/** Violates LockOrderProperty. */
public class CreatFileTest extends AbstractDaisyTest {

private static final int LONG_NAME = 257;
private static final int THREADS = 2;

5.3 Complex Test Case 55

@Test
public void testCreatFile() {
creatFile("xyz");

}

@Test
public void testCreatFileThreads() {
for (int i = 0; i < THREADS; ++i) {

Thread t = new Thread(new Runnable() {
@Override
public void run() {

creatFile("t_" + j);
}

});
t.start();

}
// ... join all threads ...

}

@Test
public void testCreatLongFilename() {
String filename = TestUtil.createFilename(LONG_NAME);
try {

creatFile(filename);
} catch (Exception e) {

e.printStackTrace();
}
creatFile("abc");

}

private void creatFile(String name) {
System.out.println("Creating file named " + name

+ " in root:");
System.out.println("Return code: "

+ DaisyDir.creat(root, stringToBytes(name), fh));
System.out.println("Returned file handle: " + fh);

}

}

6 Related Work 56

Chapter 6

Related Work

A significant amount of related work was listed in the introduction to unit checking
in Section 2.3. A focus was given on the theoretical background of unit checking and
various ideas that integrate unit testing and model checking. This section focuses more
on existing tools that are somehow related to unit checking, novel testing techniques, or
to the UnitCheck implementation. A special focus is given on tools employing JUnit and
JPF, and tools targeting the Java programming language.

6.1 Testing Frameworks

JUnit which is a part of UnitCheck comes from the family of xUnit testing frameworks.
They are all very similar – the main difference is mostly in the target programming lan-
guage. Therefore, these frameworks are not listed here. Instead, the testing frameworks
which employ a model checker (Section 6.1.1) or automatically generate a suite of regres-
sion (JUnit) tests (Section 6.1.2, Section 6.1.3) are described here.

The papers listed in Section 2.3 often propose to use a model checker for generating
test cases. Some of the test-generating tools mentioned here use ideas related to model
checking (e.g, Pex), some not (e.g., JCrasher) and some do not provide their implementa-
tion details (e.g., Jtest). Agitar and Pex are described later in more detail because they
are used in the industry and enough information about them is available.

The jCUTE tool [60] uses concolic execution1 to handle concurrency and generate
JUnit tests. The jFuzz tool [34] employs JPF to perform concolic execution and generate
inputs that exercise new program paths. JCrasher [31] uses random input data to exercise
the Java code and create tests. Jtest [16] is a tool for generating a suite of regression JUnit
tests. Additionally, it checks a huge set of coding rules to prevent frequent errors. CoView
[7] generates only the stubs of JUnit tests which have to be completed by developers.
Besides generating regression JUnit tests, CodePro AnalytiX [5] has a support for design
by contract.

1 Concolic execution simultaneously combines concrete and symbolic execution of the code under test.

6.1 Testing Frameworks 57

6.1.1 Java PathFinder Test System

JPF itself comes with its own test system used for regression testing of two major JPF
components – a virtual machine (class loading, field access, etc.) and a model checker
(state management, search strategies, etc.). The JPF test system is not an example of
a generic testing framework. It is mentioned here because both tools (JPF and JUnit)
integrated in UnitCheck are used in this system, too. Differences between UnitCheck and
the JPF test system, their capabilities, and typical use cases are covered in this section.

The design of the JPF test system results from the need for running tests in a number
of ways – under a normal VM, under JPF itself, and using JUnit. Figure 6.12 shows the
structure of tests and one example of a test. Each test comprises of two classes.

Figure 6.1 Java PathFinder Test System – Structure of Tests

Raw test program (TestCast)
This is a plain Java executable program containing the test itself. It contains a
number of test methods performing the actual test work. The main method always
follows the same scheme – it only calls a test method whose name was passed as
an argument. These test programs can be executed under JPF or a normal virtual
machine.

JUnit test driver (TestCastJPF)
The driver is a simple wrapper above the corresponding raw test class. It adds a

2 Taken from http://javapathfinder.sourceforge.net.

6.1 Testing Frameworks 58

support for running the raw tests under JUnit. For each test method of the raw test
class, there is a method marked with the JUnit @Test annotation in the driver. This
JUnit test just runs the corresponding raw test under JPF using the JPF class (see
3.2 for details about embedding JPF) and one of the runJPF... methods which
checks whether the raw test finished as expected or not. In addition, the test driver
contains the main method which explicitly calls the JUnit console runner.

The JPF test system is used for testing JPF itself. JUnit facilitates running of a
number of raw tests in a batch and provides reports about the count of successful and
failed tests. There is no support for running our own JUnit tests under JPF using this
system. It requires a bit of extra non-testing code (test drivers and main methods of raw
tests) to be written which is in contrast to ordinary JUnit tests. On the other hand, the
test system allows to execute tests without JUnit.

On the contrary, UnitCheck is a result of an effort to run ordinary JUnit tests under
JPF without losing a possibility to run them under a normal virtual machine. Test writers
do not have to learn anything new – tests executed under UnitCheck are pure JUnit tests.
Even the way of running tests is very similar to JUnit runners and plugins. The users
of UnitCheck may benefit from all advantages of the JPF model checker described in
previous chapters.

It cannot be said which system is better. Both of them have different objectives,
especially in the way of employing JUnit which is once more illustrated in Figure 6.2.
The JPF test system cannot be completely replaced with pure JUnit tests executed under
UnitCheck. There are two reasons why.

� In UnitCheck, property violations are always treated as errors. The JPF test system
allows to create tests that expect a violation of a property (e.g., runJPFDeadlock).

� Besides exceptions raised by raw tests, the JPF test system handles also exceptions
thrown by JPF itself.

Figure 6.2 Java PathFinder Test System vs. UnitCheck

6.1.2 Agitar

Agitar [1] comes with two techniques for improving the process of testing Java applications.
First, it automatically generates a suite of JUnit tests. For each class in the application

6.1 Testing Frameworks 59

being tested, a JUnit test case is generated with a lot of test methods covering as much
code of the class as possible. These regression tests are not intended to be read and edited
by developers. The tests can be run later to assure that changes in the implementation
do not change the behavior of the application.

To resolve dependencies in tests, mocking is used by Agitar. The generating of tests can
be directed by developers. Test helpers are classes that help Agitar to achieve higher code
coverage by enumerating arguments used for invoking tested methods. Class invariants
specify contracts that are checked in every generated test.

The second technique is called agitation, a form of exploratory testing [29]. Agitar
exercises the code with various input data and presents a list of observations. If an
observation describes an intended behavior of the code, the developer may direct Agitar
to create an assertion (JUnit test) from the observation. Otherwise, the developer may
immediately fix the bug.

Agitar is a client-server system. The client part is integrated into Eclipse with plugins
for generating tests, running agitation, etc. As the generating can be very time-consuming
for bigger projects, it is performed by the server which can be spread on multiple machines.
The server also provides reports about code coverage and complexity, and has a support
for continuous integration and testing.

6.1.3 Pex

Before digging deeper in Pex, let us describe the concept of parametrized unit tests (PUTs)
[61] which are extensively used by Pex. A traditional object-oriented unit test is param-
eterless, it executes the code under test with fixed arguments hard-coded in the test
method. On the other hand, a parametrized test is generic, it uses varying inputs (pa-
rameters) for executing the code under test. A traditional unit test can be viewed as an
instance of a parametrized test.

Different testing frameworks use different approaches to inject the actual values of
parameters in tests. In JUnit, parameters are represented as member fields in test classes,
filled by so called parameter feeders, and a special runner (Parametrized) has to be used
for running them. In Pex, it is more straightforward – test methods have arguments that
represent the test parameters.

As a result, these generic parametrized tests can be run multiple times with various
parameters. In a traditional unit test, it can be achieved only by looping over all values
of the parameters (either by an explicit loop in a test, or by creating a new test for each
value). Listing 6.1 illustrates differences between both types of tests that are testing the
Trim method. The first test uses only one fixed string as an input, while the second takes
the input as a parameter.

Listing 6.1: Parametrized vs. Traditional Unit Test
[TestMethod]
void TestTrim() {

String s = "Hello ";
String res = s.Trim();
Assert.isTrue("Hello" == res);

}

6.2 IDE Integrations 60

[PexMethod]
void TestTrim([PexAssumeNotNull] String s) {

String res = s.Trim();
// assert that all leading and trailing characters are removed
Assert.isTrue(...);

}

The question is what values should the testing framework use for test parameters.
In JUnit, the values are explicitly specified in a test by a programmer. Therefore,
parametrized tests (or data-driven tests) are only a syntactic sugar for testing code with
more input, still fixed, data sets. Pex comes with a different approach, it automatically
generates the (minimal) set of inputs that (in ideal case) fully cover the code reachable
from the test.

Pex [47, 53, 55, 48] is a Microsoft tool integrated into MS Visual Studio3. The tool
is not restricted to the usage of parametrized unit testing. It can analyze any .NET
method, generate its interesting inputs, and display the output for each generated input
(if an exception is raised for a certain input, its stack trace is provided). The generated
inputs can be saved as a test suite in the form of traditional unit tests4 and used for
debugging the failed inputs and for regression testing (both without Pex being involved).

The generated test cases provide high code coverage [68] (sometimes even 100%).
Therefore, they can reveal null pointer dereferences and violations of contracts and asser-
tions used within the actual implementation. But the generated tests do not check that
the method being tested behaves as expected. To check the behavior of methods, Pex
runs parametrized unit tests written by programmers. PUTs specify assumptions to filter
out some inputs and assert the desired behavior of methods under test (see Listing 6.1).

To achieve high code coverage, Pex does not select input values randomly. Instead, it
employs dynamic symbolic execution. Pex executes the code multiple times and searches
for branches that were not covered previously. If such a branch is found, a constraint
system (i.e., a predicate over the test inputs) is constructed and the Z3 constraint solver
[21] tries to find inputs that will lead to reaching that branch. If it succeeds, the code is
executed with the new input and the whole process is repeated.

We believe that features provided by all the test-generating tools mentioned above
(including Pex) can be used in synergy with unit checking. Automatically generated tests
can be run under UnitCheck and users will benefit from exploring all admissible thread
interleavings.

TODO: zminit CHESS jako doplnek k Pexu.

6.2 IDE Integrations

This section presents model checking tools integrated in various IDEs with a focus on
Eclipse which is used for the UnitCheck plugin. Two plugins that bring support for run-

3 Command-line interface is also provided to allow for automation.
4 Pex integrates with MSTest, xUnit, NUnit, MbUnit, and other testing frameworks.

6.2 IDE Integrations 61

ning Java PathFinder within the Eclipse IDE5 are covered in more detail. Although a
direct comparison with the UnitCheck tool cannot be made, it is important to mention
these plugins. Same as UnitCheck, they integrate Java PathFinder in Eclipse, the differ-
ence is that UnitCheck adds support for running JUnit tests under JPF. But from the
user point of view, the UnitCheck plugin and other plugins offer similar features which
can be compared. Moreover, the evaluation of other JPF plugins is important for fu-
ture considerations of extending the UnitCheck plugin with a feature to run pure Java
applications under JPF (as other plugins do).

There are Eclipse plugins for other model checkers – BLAST [23] and CMBC [4]
targeting C programs, Spin [62, 58] for models written in Promela, Bogor [3] using its
own modeling language, TLC model checker [19] which uses TLA+ specifications.

6.2.1 JPFep6

JPFep [10] is a short for Java PathFinder Eclipse Plugin. The project is developed at the
Technion and describes itself as a plug-in that integrates JPF into Eclipse as a special kind
of debugger and provides a user friendly interface for configuring JPF’s large number of
parameters.

The plugin has not been updated since 2008 which is probably the reason why it does
not work with the latest version of Java PathFinder7 and also one of the reasons why
it was impossible to successfully run the whole plugin. Nevertheless, some parts of the
plugin are working or at least partially working which allowed to summarize a couple of
user comments.

+
An internet update site allows to install the plugin in an easy and convenient
way.

+
Debug configurations and launch shortcuts are standard Eclipse solutions that
plugins running different resources should have.

+
–

A lot of JPF parameters can be specified through the GUI. On the other hand,
no default values are provided for such parameters and it takes a lot of time to
fill them correctly.

–
JPF is not bundled as a part of the plugin. Users have to bother with installing
and configuring JPF. Changes in JPF may even break the plugin.

–

Debug perspective is used by the plugin which is a little bit confusing when
there is no chance to use breakpoints or track variables when a program to be
checked is run under JPF. Java perspective and Run configurations would be
better for the purpose of this plugin.

JPFep was originally a part of the CAPE tool suite [6] which is an environment for
various verification and analysis tools. A plugin that integrates JPF into Eclipse is one

5 In [40], authors describe the implementation of another Eclipse plugin. A plugin for the NetBeans
IDE is developed in the main trunk of Java PathFinder. As this plugin has not matured yet, it is not
thoroughly evaluated here.

6 The following text applies to the version 1.1.0.
7 There were a number of changes that made older JPF extensions incompatible with the latest JPF

(e.g. vm.peer_packages has been renamed to vm.peer.packages).

6.2 IDE Integrations 62

of subprojects in this suite. Unfortunately, everything that has been said so far about
JPFep applies also for this older plugin which is not under active development. A couple
of comments can be added based on a video tutorial that can be found on CAPE’s project
page.

– No way how to configure JPF parameters through Eclipse.

–
JPF output is displayed only in the Console view (see Figure 6.3). As a result the
plugin does not come with much added value in comparison with the command-
line JPF tool.

Figure 6.3 JPFep – Displaying Results of Checking

6.2.2 Visual Java PathFinder8

Visual Java PathFinder (VJP) [20] is another plugin that integrates JPF in Eclipse. The
project was started in 2008 during Google Summer of Code by Sandro Badame and is
still actively developed. A quotation from project’s page follows.

VJP serves to simplify the process of verifying your program. Verifying Java
programs with JPF requires downloading, updating, building, configuring and
verifying, all manually. On the other hand with VJP handles all of this and
allows configuring and verifying to be done through a GUI with the push of a
button.

On top of all of this, one of VJP’s main advantages is that it also displays
JPF’s results graphically. Execution paths are graphically displayed giving the
details of every step taken.

Same as with the previous plugin, the following table contains some of the plugin’s
pros and cons.

8 The following text applies to the version 1.0.19.

6.2 IDE Integrations 63

+
An internet update site allows to install the plugin in an easy and convenient
way.

+
JPF is packaged with the plugin and therefore, users do not have to install and
configure it.

+
JPF configuration parameters can be set in the GUI with a possibility to use the
default values. Configurations can be saved in files and used with standalone
JPF.

+
–

Topics view (see Figure 6.4) uses the JPF Publisher interface and highlights
links to source codes. On the other hand, it only displays what JPF command
line tool prints, without any graphical representation.

+
-

Output view (see Figure 6.4), which is no longer the default one and has to be
explicitly configured, splits the output information into a set of transitions and
displays them separately. The execution trace of each transition is not clickable
and the view as a whole does not fit Eclipse very well.

–
Verify view completely duplicates Eclipse Run configurations view which should
have been used instead.

– Eclipse launch shortcuts are not implemented.

Figure 6.4 VJP Views – Topics, Output

7 Summary and Conclusion 64

Chapter 7

Summary and Conclusion

This work presented the idea of unit checking which brings the benefits of code model
checking to the unit testing area the developers are familiar with. The prototype im-
plementation called UnitCheck integrates JUnit testing framework and Java PathFinder
model checker. The UnitCheck tool allows to run standard JUnit tests under JPF and
summarizes reports about test execution provided by both JUnit and JPF. For each test
failure, a complete execution trace allows developers to quickly find reasons of the failure.

Of course, not all tests are amenable for unit checking. Only tests for which the
standard testing is not complete (i.e., tests that feature random values or concurrency)
would benefit from exhaustive traversal using UnitCheck1. As UnitCheck accepts standard
JUnit tests, developers can seamlessly switch among the testing engines as necessary.

The work has reached all the main requirements listed in Section 1.2. Both JUnit
and JPF were integrated in UnitCheck without changing their implementation. Only
the public documented interfaces provided for extending JUnit and JPF are used by
UnitCheck. The core of UnitCheck has a form of a library that can embedded in various
development supporting tools. As a result, not only the Eclipse plugin allows for unit
checking. Ant task and a simple command-line application are two other user interfaces
for UnitCheck.

Currently, UnitCheck has a couple of known limitations. All of them are related to
Java annotations introduced JUnit 4.

� The @Time annotation is used in JUnit tests to assert that a test finishes within a
specified time frame. JPF does not model Java time functions (e.g., System.curr-
entTimeMillis()) used by JUnit. Therefore, UnitCheck does not report violations
of time restrictions put on tests using @Test annotations.

� Tests annotated with the @Ignore annotation are not executed by JUnit. UnitCheck
does not recognize this annotation and executes all input tests. In future, the
support for the @Ignore annotation can be added to UnitCheck (UnitCheckList-
ener will have another method called methodIgnored).

1 Only the (increasing) portion of the standard Java libraries supported by JPF can be used in the
tests.

7 Summary and Conclusion 65

Although the UnitCheck tool can be used as is which is presented on an example in
Chapter 5, there are still features that can be changed or added to UnitCheck in future.

� A choice generator proposed in Section 3.3 is an elegant way of running multiple
JUnit tests in one JPF run. When such a choice generator is implemented, @Bef-
oreClass and @AfterClass JUnit annotations will behave exactly the same as in
the default JUnit runners.

� The UnitCheck Eclipse plugin provides an intuitive way of running JUnit tests. It
offers a user interface similar to the JUnit Eclipse plugin which is not the case of
existing plugins integrating Java PathFinder in Eclipse. The UnitCheck plugin can
be extended to support running plain Java applications under JPF.

� JPF comes with an extension for symbolic execution (JPF-SE) [26] of Java programs.
The possibilities of employing symbolic execution to generate JUnit tests or run
existing JUnit tests should be studied in future.

Besides the UnitCheck tool and this text, another outcome of the work is the paper
[54] accepted for publication in LNCS.

A.1 Command-line Tool 66

Appendix A

User Manual

A.1 Command-line Tool

Executable programs can be found in the unitcheck/bin directory – unitcheck for Unix
environments and TODO for Windows). The following options are recognized, the bold
ones are required.

-t <classname> JUnit test class to be checked, fully-qualified class
name must be used.

-p <path1>:<path2>:... Colon-separated list of classpath elements that will
be used by JPF VM for checking a test class.

-s <path1>:<path2>:... Colon-separated list of sourcepath elements that
will be used when reporting execution history. If
not specified the history might be empty.

-m <methodname> Name of a single method to be checked. By default
all methods from a class are checked.

-c <filename> Path to a JPF configuration file. All default JPF
configuration parameters will be overriden with
values from this file.

-e Do not print the execution history when an error
occurs (by default the history is printed).

-a Trace also the standard Java libraries when an er-
ror occurs (by default the Java libraries are not
traced).

-d Print bytecode intructions in the execution history
(by default bytecode is not printed).

-j Do not filter JUnit and UnitCheck code out of the
execution history (by default the filtering is on).

-b <dirname> The base directory of UnitCheck. You will hardly
ever need this option, it is set by wrapper scripts.

-w Do not stop checking when an error occurs. It is
not recommended to use this option.

A.2 Eclipse Plugin 67

The typical command for running UnitCheck follows.

$./unitcheck −p /mydir/myproject/classes −s /mydir/myproject/src
−t cz.foo.Test1

A.2 Eclipse Plugin

A.2.1 Installation

The plugin requires Eclipse IDE 3.4 or higher, it was successfully tested with versions
3.4.1 and 3.5M6. The plugin cannot be used with the version 3.3 or lower because it
requires API that is not available in these old versions.

Before you can start using the plugin, it is necessary to properly install it to your
Eclipse IDE. In order to do so, you have to access so called update site. This can be done
in two ways:

� either you use the UnitCheck plugin update site at http://aiya.ms.mff.cuni.c-
z/unitchecking/plugin,

� or you use the local update site archive (which you might e.g. build from the plugin
sources).

In either case, follow these steps1:

1. Open the Software Updates and Add-ons dialog by selecting Help|Software Up-
dates from the main menu.

2. Choose the Available Software tab.

3. Click Add Site... to define the update site.

If you want to use the UnitCheck plugin update site, enter the URL of the site in
the Location box. Click OK to confirm.

In case you have the local update site archive (file named unitcheck-eclipse-

plugin-rev*.zip, where * stands for the revision number), choose Archive... and
in the displayed dialog select the file. Click OK to confirm.

4. Eclipse connects to the update site and offers you the features provided by the site.
Check the UnitCheck Eclipse Plugin feature and click Install....

5. In order to use the plugin, you have to agree with its license and continue by selecting
Finish.

6. After the plugin is installed, acknowledge the Eclipse restart.

1 Applies only to Eclipse 3.4, the plugin management is a little bit different in Eclipse 3.5.

A.2 Eclipse Plugin 68

The plugin can be uninstalled using the same Software Updates and Add-ons dialog
(select Help|Software Updates from the main menu). In the first Installed Software
tab select UnitCheck Eclipse Plugin item and click the Uninstall... button. After you
confirm that you agree with uninstallation, the plugin will be removed from your Eclipse
IDE.

The plugin consists of two views that can be shown by opening the Window |Show
View |Other... dialog and selecting the views in the UnitCheck category. You can place
the views on your favourite locations in the Eclipse IDE. Both views will be described in
next sections.

A.2.2 Running

There are a couple of ways how to run UnitCheck on a selected JUnit test or a set of
tests.

� One can right click a single test, directory or a whole project in the Package Ex-
plorer and select Run As|UnitCheck as Figure A.1 shows. The UnitCheck run
option is displayed only for items that contain at least one JUnit test. All test
classes within selected element will then be checked.

Figure A.1 Running UnitCheck from Package Explorer

� If a test class is opened in the Java editor, one may right click the source code and
select Run As|UnitCheck. Only this single test class will be checked.

� The last way of running uses configurations that can be reached by selecting Run
|Run Configurations... from the main menu. In the dialog right the UnitCheck
category and select New which creates a new run configuration. The Main tab
defines tests to be checked as Figure A.2 illustrates.

– Either a single test class can be checked. First a Java project must be selected
using the Browse... button and after clicking the Search button a list of all
classes from the project containing at least one JUnit test will be displayed.
Only the selected class will be then checked.

A.2 Eclipse Plugin 69

– Or all tests from selected project or package can be checked. After clicking the
Select... button the tree of all projects and packages containing at least one
JUnit test will be displayed.

JPF properties overriding default JPF properties can be specified in the textbox.
Each one is written in a single row in the form of <prop name>=<prop value>.
An example of a propery is jpf.listener for defining custom JPF listeners used
when checking.

You will hardly ever need to change anything in the standard Eclipse run tabs
– Classpath, Source and Common. Classpath and sourcepath are based on the
particular Java project’s settings and are passed to JPF VM.

If the configuration is ok the Run button starts checking of selected test classes.

Figure A.2 Running UnitCheck from Run Configurations

A.2.3 Result of Checking

After the checking is started the Console view will contain the same output as the equiv-
alent launch of the command-line UnitCheck program.

The Check Summary view incrementally displays classes that were checked in the
current run. The view is split into two parts as Figure A.3 shows. The first one contains
the tree of all classes that were checked. Each class comprises of a list of test methods
with icons indicating whether the checking of the particular method finished successfully
or not. Double clicking any item in the tree opens its source code in the Java editor.

A.2 Eclipse Plugin 70

The second part of the view contains more information about checking results of a
selected test method. In case an error was detected by UnitChecker three buttons for
showing detailed information are displayed. The first button called Show Exception
is enabled only for errors that were caused by an uncaught exception, it is disabled for
violations of JPF properties. After clicking the button the exception stracktrace is printed
in the Path view which will be described in the next section in more details. The Show
Path and Show Snapshot buttons allow to read the complete execution history leading
to the error and the state of all threads at the moment the error occured. A short of
summary of the error can be found in the textbox below the buttons.

The right upper corner of the view contains a couple of buttons for manipulating with
the tree of test classes. The buttons allow to

� expand and collapse all tree items,

� stop checking,

� rerun the previous checking,

� show only test methods that finished with an error.

Figure A.3 Check Summary view

A.2.4 Inspecting Error Traces

This section applies only for situations where a test finished with an error. In such case
the Path view can be used for detecting reasons that led to the error. In general the
view displays the execution history provided by JPF but in more convenient way than

A.2 Eclipse Plugin 71

the command-line program. The execution history, or path in other words, is split into
a set of transitions which are listed in the left part of the view in a grid. The right part
shows detailed information about the selected transition. Each transition is a result of
so called choice in JPF, the choice usually produces more transitions as JPF backtracks
to the choice point again and again. Therefore the user can see the following data about
each transition.

� Number of the thread that executed the transition.

� Type of the choice (e.g. selection from a set of threads to be executed).

� Additional information about the choice (e.g. which thread was selected).

� Instruction that caused a choice to be created (i.e. the choice point).

� Number of the choice in the choice point (in the form of choice number/choice total).

Figure A.4 Path view

Transitions in the grid are coloured differently, those executed by the same thread
are coloured with the same background colour. When a transition is selected all other
transitions that were executed by the same thread are highlighted in bold. User can use
either the keyboard arrows to move in the grid or arrow buttons in top upper corner of the
view. The arrows marked with T jump only between transitions executed by the same
thread.

Three other view buttons allow to

� show bytecode instructions along with the source code listing,

� trace standard Java libraries (can be combined with the previous button),

� search the code listing.

A.3 Ant Task 72

A.3 Ant Task

For better integration of UnitCheck into existing projects the Ant task is also provided.
This task should always be preferred to command-line program because it offers more
convenient way of running JUnit under JPF.

After extracting unitcheck-ant-task-rev*.zip the following structure will appear:

� lib contains taks’s binary code as well its dependencies in the form of JAR files,

� src and classes can be used for looking at example JUnit tests,

� examples contain Ant build files that use the UnitCheck task for checking sample
tests.

Before the task can be used it must be properly defined in a build file as Example A.1
shows. The task depends on a couple of JAR files located in its lib directory. According
to Ant guidelines this way of defining task’s dependencies is more flexible than using Ant’s
global lib directory.

A.3 Ant Task 73

Example A.1 UnitCheck task definition & usage

<?xml version="1.0" ?>
<project name="myproject" default="mytarget" basedir=".">

<property name="unitcheck.task.dir"
location="<unitcheck−ant−task−dir>/lib" />

<path id="unitcheckcp">
<fileset dir="${unitcheck.task.dir}" includes="*.jar" />

</path>

<taskdef name="unitcheck"
classname="cz.kebrt.unitcheck.ant.UnitCheckTask"
classpathref="unitcheckcp"

/>

<target name="mytarget">
<property name="proj.dir" location="/project/daisy" />
<unitcheck basedir="${unitcheck.task.dir}">

<vmclasspath>
<pathelement path="${proj.dir}/classes" />

</vmclasspath>
<vmsourcepath path="${proj.dir}/src,${proj.dir}/testsrc" />

<jpfproperty key="jpf.listener"
value="daisy.jpf.DaisyLockOrderProperty" />

<jpfproperty key="search.properties"
value="gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty" />

<test class="daisy.unittest.CreatFileTest"
method="testCreatFile" />

<test class="daisy.unittest.CreatFileTest"
method="testCreatLongFilename" />

<batchtest>
<fileset dir="${proj.dir}">

<include name="**/*Test*.java" />
</fileset>

</batchtest>
</unitcheck>

</target>

</project>

The unitcheck task has the following attributes and subelements, the bold ones are
required.

Attribute name Default Description
basedir UnitCheck task’s lib directory. The same di-

rectory was used in the task definition.
vmclasspathref Reference to a classpath that will be used by

JPF VM when checking. The vmclasspath ele-
ment can be used instead.

A.3 Ant Task 74

Attribute name Default Description
vmsourcepathref Reference to a sourcepath that will be used by

JPF VM when reporting errors. If not specified
the execution history might be empty. The vm-

sourcepath element can be used instead.
conffile Path to a JPF configuration file. All default JPF

configuration parameters will be overriden with
values from this file. The jpfproperty elements
can be used instead.

printpath true Print the execution history (path) when an error
occurs.

printbytecode false Print the bytecode intructions along with the
execution history.

filterjunittrace true Filter the JUnit and UnitCheck code out of the
execution history.

tracejre false Trace the standard Java libraries in the execu-
tion history.

Element name Description
vmclasspath Classpath that will be used by JPF VM when checking. All

standard Ant constructs for creatings path-like structures can
be used within the element. The vmclasspathref attribute can
be used instead.

vmsourcepath Sourcepath that will be used by JPF VM when reporting er-
rors. If not specified the execution history might be empty. All
standard Ant constructs for creatings path-like structures can
be used within the element. The vmsourcepathref attribute
can be used instead.

jpfproperty Allows to override default JPF configuration parameters. Each
property has the key and value attributes.

test Defines a JUnit test to be checked2. Each test must have a test
class assigned. The method attribute allows to specify only a
single test method, otherwise all test methods within the class
will be checked.

batchtest More tests to be checked can be specified using this element. All
standard Ant constructs for defining filesets can be used within
the element. Only the .java and .class files will be taken into
account.

2 Remember that the classpath containing the test and its dependencies must be configured using
vmclasspath or vmclasspathref.

Bibliography 75

Bibliography

[1] Agitar, http://www.agitar.com.

[2] Apache ant manual, http://ant.apache.org/manual.

[3] Bogor, http://bogor.projects.cis.ksu.edu.

[4] CMBC – Bounder Model Checker, http://www.cprover.org/cmbc.

[5] CodePro AnalytiX, http://www.instantiations.com.

[6] Common Aspect Proof Environment (CAPE), http://www.cs.technion.ac.il/~-
ssdl/research/cape.

[7] CoView, http://www.codign.com.

[8] Daisy file system. joint CAV/ISSTA special event on specification, verifica-
tion, and testing of concurrent software, http://research.microsoft.com/en-

us/people/qadeer.

[9] Equinox, an implementation of the OSGi R4 core framework,
http://www.eclipse.org/equinox.

[10] Java PathFinder Eclipse PlugIn (JPFep) project,
https://ssdl-linux.cs.technion.ac.il/trac/JPFep.

[11] Java PathFinder (JPF), http://javapathfinder.sourceforge.net.

[12] JFace UI toolkit, http://wiki.eclipse.org/index.php/JFace.

[13] JUnit testing framework, http://www.junit.org.

[14] Nebula project – supplemental custom widgets for SWT,
http://www.eclipse.org/nebula.

[15] OSGi – the dynamic module system for java, http://www.osgi.org.

[16] Parasoft Jtest: Java Testing Toolkit, http://www.parasoft.com.

[17] Spin, http://spinroot.com.

[18] SWT: The standard widget toolkit, http://www.eclipse.org/swt.

[19] TLC, http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html.

Bibliography 76

[20] Visual Java PathFinder (VJP), http://visualjpf.sourceforge.net.

[21] Z3: SMT Solver, http://research.microsoft.com/en-

us/um/redmond/projects/z3.

[22] IEEE Standard Glossary of Software Engineering Terminology. IEEE, 1990.

[23] An eclipse plug-in for model checking. In IWPC ’04: Proceedings of the 12th IEEE
International Workshop on Program Comprehension, page 251, Washington, DC,
USA, 2004. IEEE Computer Society.

[24] Paul Ammann, Paul E. Black, and Wei Ding. Model checkers in software testing.
Technical report, NIST-IR 6777, National Institute of Standards and Technology,
2002.

[25] Paul E. Ammann, Paul E. Black, and William Majurski. Using model checking to
generate tests from specifications. In In Proceedings of the Second IEEE Interna-
tional Conference on Formal Engineering Methods (ICFEM ’98, pages 46–54. IEEE
Computer Society, 1998.

[26] Saswat Anand, Corina Pasareanu, and Willem Visser. JPF–SE: A symbolic execution
extension to java pathfinder. In TACAS, volume 4424 of LNCS, pages 134–138.
Springer, 2007.

[27] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg, Con
McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner. Thorough
static analysis of device drivers. SIGOPS Oper. Syst. Rev., 40(4):73–85, 2006.

[28] J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing using
modelchecking, 1996.

[29] Cem Kaner. QAI QUEST Conference, Chicago, April 2008, http://www.kaner.com.

[30] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

[31] Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robustness
tester for Java. Software—Practice & Experience, 34(11):1025–1050, September 2004.

[32] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SATABS:
SAT-based predicate abstraction for ANSI-C. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2005), volume 3440 of Lecture Notes in
Computer Science, pages 570–574. Springer Verlag, 2005.

[33] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-ins. Ad-
dison Wesley Professional, 2006.

[34] Adam Kiezun David Harvison, Vijay Ganesh. jFuzz: A concolic whitebox fuzzer for
java. In The First NASA Formal Methods Symposium, pages 121–125, 2009.

[35] Niels H. M. Aan de Brugh, Viet Yen Nguyen, and Theo C. Ruys. Moonwalker:
Verification of .net programs. In TACAS, pages 170–173, 2009.

Bibliography 77

[36] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[37] Elliotte Rusty Harold. An early look at JUnit 4. IBM developerWorks, 2005.

[38] Elsa L. Gunter and Doron Peled. Unit Checking: Symbolic Model Checking for a
Unit of Code. In Verification: Theory and Practice, pages 548–567, 2003.

[39] Fevzi Belli and Baris Güldali. Software Testing via Model Checking. In ISCIS, pages
907–916, 2004.

[40] Francesca Arcelli, Claudia Raibulet, Ivano Rigo, and Luigi Ubezio. An Eclipse Plug-
in for the Java PathFinder Runtime Verification System. In SEW ’06: Proceedings
of the 30th Annual IEEE/NASA Software Engineering Workshop, pages 142–152,
Washington, DC, USA, 2006. IEEE Computer Society.

[41] Gregor Engels and Baris Güldali and Marc Lohmann. Towards Model-Driven Unit
Testing. In Thomas Kühne, editor, MoDELS Workshops, volume 4364 of Lecture
Notes in Computer Science, pages 182–192. Springer, 2006.

[42] Guillaume P. Brat and Doron Drusinsky and Dimitra Giannakopoulou and Allen
Goldberg and Klaus Havelund and Michael R. Lowry and Corina S. Pasareanu and
Arnaud Venet and Willem Visser and Richard Washington. Experimental Evaluation
of Verification and Validation Tools on Martian Rover Software. Formal Methods in
System Design, 25(2-3):167–198, 2004.

[43] Hao Chen and Drew Dean and David Wagner. Model Checking One Million Lines of
C Code. In NDSS, 2004.

[44] Klaus Havelund. Java PathFinder, A Translator from Java to Promela. In Proceed-
ings of the 5th and 6th International SPIN Workshops on Theoretical and Practical
Aspects of SPIN Model Checking, page 152, London, UK, 1999. Springer-Verlag.

[45] Klaus Havelund and Willem Visser. Program Model Checking as a New Trend.
STTT, 4(1):8–20, 2002.

[46] Johannes Link and Peter Frohlich. Unit Testing in Java: How Tests Drive the Code.
Morgan Kaufmann Publisher, 2003.

[47] Jonathan de Halleux and Nikolai Tillmann. Parameterized Unit Testing with Pex.
Tests and Proofs, pages 171–181, 2008.

[48] Jonathan de Halleux, Nikolai Tillmann, Wolfram Schulte. Parameterized Unit Test-
ing with Pex – Tutorial, http://research.microsoft.com.

[49] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[50] Lasse Koskela. Test Driven: Practical TDD and acceptance TDD for Java developers.
Manning, 2008.

Bibliography 78

[51] Madanlal Musuvathi and David Park and Andy Chou and Dawson Engler and David
Dill. CMC: A Pragmatic Approach to Model Checking Real Code. In Proceedings
of the Fifth Symposium on Operating System Design and Implementation, December
2002.

[52] Masoud Mansouri-Samani, Corina S. Pasareanu, John J. Penix, Peter C. Mehlitz,
Owen O’Malley, Willem C. Visser, Guillaume P. Brat, Lawrence Z. Markosian,
Thomas T. Pressburger. Program Model Checking – A Practitioner’s Guide. NASA
Ames Research Center, 2007.

[53] Michael Ziller. PeX – Parameterized Unit Tests in Visual Studio. University of
Karlsruhe, Formal Software Development Seminar, 2008.

[54] Michal Kebrt and Ondřej Šerý. UnitCheck: Unit Testing and Model Checking Com-
bined. Accepted for publication in Proceedings of ATVA’09, LNCS, 2009.

[55] Mike Barnett and Nikolai Tillmann. Contract Checking and Automated Test Gen-
eration With Pex, PDC2008.

[56] Jan Tobias Mühlberg and Gerald Lüttgen. Blasting linux code. In FMICS/PDMC,
pages 211–226, 2006.

[57] Oksana Tkachuk and Matthew B. Dwyer and Corina S. Pasareanu. Automated
Environment Generation for Software Model Checking. In ASE, pages 116–129, 2003.

[58] Gerrit Rothmaier, Tobias Kneiphoff, Heiko Krumm, and Bosch Rexroth Ag Witten.
Using spin and eclipse for optimized high-level modeling and analysis of computer
network attack models, 2005.

[59] Scott Ranville and Paul E. Black. Automated Testing Requirements-Automotive
Perspective. The Second International Workshop on Automated Program Analysis,
Testing and Verification, 2001.

[60] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit path
model-checking tools. pages 419–423. 2006.

[61] Tillmann, Nikolai and Schulte, Wolfram. Parameterized unit tests. SIGSOFT Softw.
Eng. Notes, 30(5):253–262, 2005.

[62] Aleksander Vreže Tim Kovše, Boštjan Vlaovič and Zmago Brezočnik. Eclipse plug-in
for spin and st2msc tools-tool presentation. In Model Checking Software, volume
5578/2009 of Lecture Notes in Computer Science, pages 143–147. Springer, 2009.

[63] Vincent Massol and Ted Husted. JUnit in Action. Manning, 2004.

[64] Willem Visser, Klaus Havelund, and Guillaume Brat. Model checking programs. In
Automated Software Engineering Journal, pages 3–12, 2000.

[65] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input generation
with java pathfinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107, 2004.

Bibliography 79

[66] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A frame-
work for generating object-oriented unit tests using symbolic execution. In the 11th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 05), pages 365–381, Edinburgh, UK, April 2005.

[67] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using model
checking to find serious file system errors. In OSDI’04: Proceedings of the 6th confer-
ence on Symposium on Opearting Systems Design & Implementation, pages 19–19,
Berkeley, CA, USA, 2004. USENIX Association.

[68] Zhu, Hong and Hall, Patrick A. V. and May, John H. R. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

	Introduction
	Motivation
	Goals
	Outline of the Thesis

	Unit Testing and Model Checking
	Unit Testing
	JUnit

	Model Checking
	Java PathFinder

	Unit Checking
	UnitCheck

	Unit Checking with JUnit and JPF
	UnitCheck Architecture
	Running JUnit Tests Under JPF
	Custom JUnit Runner
	Collecting Information About Test Execution
	JUnit as a Part of UnitCheck Input
	MJI Applied on JUnit Listener
	JUnit – Perfect Exception Firewall

	UnitCheck in 3rd Party Programs
	Introduction
	Ant Task
	Eclipse Plugin
	Structure of the Plugin
	Running the Checking Process
	GUI – Views and Preference Page
	Displaying Results of Checking
	Distribution

	Case Study
	Daisy Filesystem
	Testing Environment
	Complex Test Case

	Related Work
	Testing Frameworks
	Java PathFinder Test System
	Agitar
	Pex

	IDE Integrations
	JPFep
	Visual Java PathFinder

	Summary and Conclusion
	User Manual
	Command-line Tool
	Eclipse Plugin
	Installation
	Running
	Result of Checking
	Inspecting Error Traces

	Ant Task

	Bibliography

