UnitCheck: Unit Testing and Model Checking
Combined*

Michal Kebrt and Ondfej Sery

Charles University in Prague
Malostranské nameésti 25
118 00 Prague 1
Czech Republic
michal .kebrt@gmail.com, ondrej.sery@dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz

Abstract. Code model checking is a rapidly advancing research topic.
However, apart from very constrained scenarios (e.g., verification of de-
vice drivers by SLAM), the code model checking tools are not widely used
in general software development process. We believe that this could be
changed if the developers could use the tools in the same way they al-
ready use testing tools. In this paper, we present the UNITCHECK tool,
which enhances standard unit testing of Java code with model checking.
A developer familiar with unit testing can apply the tool on standard
unit test scenarios and benefit from the exhaustive traversal performed
by a code model checker, which is employed inside UNITCHECK. The
UNITCHECK plugin for ECLIPSE presents the checking results in a conve-
nient way known from unit testing, while providing also a verbose output
for the expert users.

1 Introduction

In recent years, the field of code model checking has advanced significantly. There
exist a number of code model checkers targeting mainstream programming lan-
guages such as C, Java, and C# (e.g., SLAM [?], CBMC [?], BLAST [?], JAvA
PATHFINDER [?], and MOONWALKER [?]). In spite of this fact, the adoption of
the code model checking technologies in the industrial software development pro-
cess is still very slow. This is caused by two main reasons (i) limited scalability to
large software, and (ii) missing tool-supported integration into the development
process.

The current model checking tools can handle programs up to tens of KLOC
and often require manual simplifications of the code under analysis [?]. Unfor-
tunately, such program size is still several orders of magnitude smaller than the
size of many industrial projects.

* This work was partially supported by the Czech Academy of Sciences project
1ET400300504, and the Q-ImPrESS research project (FP7-215013) by the Euro-
pean Union under the Information and Communication Technologies priority of the
Seventh Research Framework Programme.

Apart from the scalability issues, there is virtually no support for integration
of the code model checkers into the development process. Although some tools
feature a user interface in the form of a plugin for a mainstream IDE (e.g.,
SATABS [?]), creation of a particular checking scenario is not often discussed or
supported in any way. A notable exception is SLAM and its successful application
in the very specific domain of kernel device drivers.

These two obstacles might be overcome by employing code model checking
in a way similar to unit testing — we use the term unit checking first proposed
in [?]. Unit testing is widely used in industry and developers are familiar with
writing test suites. Providing model checking tools with a similar interface would
allow developers to directly benefit from model checking technology (e.g., of
exploration of all thread interleavings) without changing their habits. Moreover,
applying model checking to smaller code units also helps avoiding the state
explosion problem, the main issue of the model checking tools.

Goals and structure of the paper. We present the UNITCHECK tool,
which allows for creation, execution and evaluation of checking scenarios using
the JAVA PATHFINDER model checker (JPF). UNITCHECK accepts standard
JUNIT tests [?] and exhaustively explores the reachable state space including all
admissible thread interleavings. Moreover, the checking scenarios might feature
nondeterministic choices, in which case all possible outcomes are examined. The
tool is integrated into the ECLIPSE IDE in a similar way as the JUNIT framework
and also an ANT task is provided. As a result, users familiar with unit testing
using JUNIT might immediately start using UNITCHECK.

Test example. Examples of two JUNIT tests that would benefit from the
analysis performed by UNITCHECK (in contrast to standard unit testing) are
listed in Figure 1. The code under test, on the left, comprises of bank accounts
and bankers that sequentially deposit money to an account. The first test creates
two bankers for the same account, executes them in parallel, and checks the
total balance when they are finished. UNITCHECK reports a test failure because
the line marked with (1) is not synchronized. Therefore, with a certain thread
interleaving of the two bankers the total balance will not be correct due to the
race condition. In most cases, JUNIT misses this bug because it uses only one
thread interleaving. The second test demonstrates the use of a random generator
(the Verify class) to conveniently specify the range of values to be used in the
test. UNITCHECK exhaustively examines all values in the range and discovers an
error, i.e., the negative account balance. When using standard unit testing, the
test designer could either use a pseudorandom number generator (the Random
class) and take a risk of missing an error, or explicitly loop through all possible
values, thus obfuscating the testing code.

2 Tool

In this section, the internal architecture of UNITCHECK is described. Addition-
ally, we discuss three user interfaces to UNITCHECK which can be used to employ
the tool in the development process.

public class Account { @Test

private double balance = 0; public void testDepositInThreads() {
Account account = new Account ();
public void deposit (double a) { Thread tl = new Thread(
balance = balance + a; //(1) new Banker (account, 5, 5));
Thread t2 = new Thread/(
public void withdraw (double a) { new Banker (account, 10, 5));
balance = balance — a;
tl.start(); t2.start();
public double getBalance () { tl.join(); t2.join();
return balance; assertEquals (account.getBalance (),
} 25 + 50, 0);
} }
public class Banker @Test
implements Runnable { public void testDepositWithdraw() {
private Account account; Account account = new Account ();
private double amount; int income = Verify.getInt (0, 10);
private int cnt; int outcome = Verify.getInt (0, 10);
@Override account .deposit (income) ;
public void run() { assertEquals (account.getBalance (),
for (int i=0; i < cnt; ++1i) { income, 0);
account .deposit (amount) ; account .withdraw (outcome) ;
} assertEquals (account.getBalance (),
} Math.max (income — outcome, 0), 0);
} }

Fig. 1. Tests that benefit from UNITCHECK’s features

2.1 Architecture

An overview of the UNITCHECK’s architecture is depicted in Figure 2. The core
module of UNITCHECK, the actual integration of JPF and JUNIT, is enclosed
in the central box. It is compiled into a Java library so that it can be easily
embedded into other Java applications (e.g., into an IDE). As an input, the core
module takes an application under analysis, the JUNIT-compliant test cases, and
optionally additional properties to fine-tune JPF. The analysis is then driven
and monitored via the UnitCheckListener interface.

It is important to note that neither JPF nor JUNIT functionality and struc-
tures are directly exposed outside the core. The UnitCheckListener interface
hides all JPF and JUNIT specific details. This solution brings a couple of ad-
vantages. (1) Extensions (e.g., ECLIPSE plugin) implement only the single (and
simple) listener interface. (ii) In future, both JPF and JUNIT can be replaced
with similar tools without modifying existing extensions.

Inside the core, UnitCheckListener is built upon two interfaces — JPF’s
SearchListener and JUNIT’s RunListener. SearchListener notifies about
property violations (e.g., deadlocks) and provides complete execution history
leading to a violation. RunListener informs about assertion violations and other
uncaught exceptions. UNITCHECK processes reports from both listeners and pro-
vides them in a unified form to higher levels through UnitCheckListener.

When analyzing the test cases, two Java virtual machines are employed.
The first one is the host virtual machine in which UNITCHECK itself and the
underlying JPF are executed. The second one is JPF, a special kind of virtual
machine, which executes JUNIT. Subsequently, JUNIT runs the input test cases

(in Figure 2, the code executed inside the JPF virtual machine is explicitly
marked). The information about test case progress provided by the JUNIT’s
RunListener interface is available only in the JPF virtual machine. To make
this information accessible in the host virtual machine, the JPF’s Model Java
Interface (MJI) API is used. It allows to execute parts of the application under
analysis in the host virtual machine instead of the JPF virtual machine. Each
class that is to be executed in the host VM has a corresponding peer counterpart.
This mechanism is used for the TestReportListener class.

Ant Task

PUnitCheckListener

A
UnitChecker i .

&
1%
|
‘ JPFListener ‘ ‘ Peer %* - ,,‘ TestReportListener ! ®

/

I3

\<LﬂSearchListener i RunListener Application
¥ (Test Target)
JPF Core rw
runs runs __

_ -
I
‘ uses ™ 1 o JPF Property

. Java executable __i Input

D Java class

D Java library

[] Executed in the JPF VM

Fig. 2. JPF and JUNIT integration

2.2 User Interface

Currently, there are three different extensions that provide user interface for
checking JUNIT tests using UNITCHECK — simple command-line application,
ANT task, and ECLIPSE plugin. The interfaces are designed to make their usage
as close to the usage of the corresponding JUNIT tools as possible. As an example,
the ECLIPSE plugin provides a user interface very similar to the JUNIT plugin for
ECLIPSE, including test summaries, progress reports, and run configurations. On
the other hand, the tools provide also a verbose output for the expert users which
are familiar with model checking tools. In addition to the easy-to-understand
JUNIT-like result summaries, the ECLIPSE plugin provides also a navigable panel
with a detailed error trace obtained from JPF with different levels of verbosity.!

! The UNITCHECK tool and all three user interfaces are available for download at
http://aiya.ms.mff.cuni.cz/unitchecking

3 Related work

The notion of unit checking was first used in [?]. The authors study the problem
of symbolic model checking of code fragments (e.g., individual functions) in
separation. In a similar vein, we use the term unit checking in parallel to unit
testing. However, the focus of UNITCHECK is in providing users with tool support
for integration of model checking into the software development process.

To our knowledge, the SLAM project [?] is by far the most successful appli-
cation of code model checking in real-life software development process. Never-
theless, its success stems from the very constrained domain of device drivers,
where the environment is fixed and known in advance by the tool’s developers.
In contrast, UNITCHECK offers benefits of code model checking in a convenient
(and familiar) interface to developers of general purpose Java software.

Another related project is CHESS, which is a testing tool that can execute
the target .NET or Win32 program in all relevant thread interleavings. CHESS
comes in a form of a plugin into Microsoft Visual Studio and can be used to
execute existing unit tests. As well as with UNITCHECK, the user of CHESS
is not forced to change his/her habits with unit testing and gets the benefit
of test execution under all relevant thread interleaving for free. In contrast to
UNITCHECK, CHESS cannot cope with random values in tests, because it uses a
layer over the scheduler-relevant API calls. The presence of a random event in
a test would result in the loss of error reproducibility.

Orthogonal to our work is the progress on generating test inputs for unit
tests for achieving high code coverage [?,?,?]. To name one, the PEX tool [?] uses
symbolic execution and an automated theorem prover Z3 [?] to automatically
produce a small test suite with high code coverage for a .NET program. We
believe that similar techniques can be used in synergy with unit checking.

There are other approaches for assuring program correctness than code model
checking. Static analysis tools (e.g., SPLINT [?]) are easy to use and scale well.
However, there is typically a trade off between amount of false positives and
completeness of such analysis. The design-by-contract paradigm (e.g., JML [?],
SPEC# [?]) relies on user provided code annotations. Specifying these annota-
tions is a demanding task that requires an expertise in formal methods.

4 Conclusion

We presented the UNITCHECK tool that brings the benefits of code model check-
ing to the unit testing area the developers are familiar with. Of course, not all
tests are amenable for unit checking. Only tests for which the standard testing
is not complete (i.e., tests that feature random values or concurrency) would
benefit from exhaustive traversal using UNITCHECKZ. As UNITCHECK accepts
standard JUNIT tests, developers can seamlessly switch among the testing en-
gines as necessary.

2 Of course, only the (increasing) portion of the standard Java libraries supported by
JPFcan be used in the tests.

References

10.

11.

12.

13.

14.

15.

16.

17.

JUnit testing framework, http://www. junit.org.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
SIGOPS Oper. Syst. Rev., 40(4):73-85, 2006.

M. Barnett, R. DeLine, M. Fahndrich, B. Jacobs, K. R. M. Leino, W. Schulte,
and H. Venter. The spec# programming system: Challenges and directions. In
B. Meyer and J. Woodcock, editors, VSTTE, volume 4171 of Lecture Notes in
Computer Science, pages 144-152. Springer, 2005.

P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions: Advanced
specification and verification with jml and esc/java2. In Formal Methods for Com-
ponents and Objects (FMCO), volume 4111 of Lecture Notes in Computer Science,
pages 342-363. Springer.

E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based pred-
icate abstraction for ANSI-C. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2005), volume 3440 of Lecture Notes in Computer
Science, pages 570-574. Springer Verlag, 2005.

. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs.

In K. Jensen and A. Podelski, editors, TACAS, volume 2988 of Lecture Notes in
Computer Science, pages 168-176. Springer, 2004.

N. H. M. A. de Brugh, V. Y. Nguyen, and T. C. Ruys. Moonwalker: Verification of
.net programs. In S. Kowalewski and A. Philippou, editors, TACAS, volume 5505
of Lecture Notes in Computer Science, pages 170-173. Springer, 2009.

D. Evans and D. Larochelle. Improving security using extensible lightweight static
analysis. IEEE Software, 19(1):42-51, 2002.

. P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing.

In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213-223, New York, USA, 2005. ACM.
E. L. Gunter and D. Peled. Unit checking: Symbolic model checking for a unit of
code. In N. Dershowitz, editor, Verification: Theory and Practice, volume 2772 of
Lecture Notes in Computer Science, pages 548-567. Springer, 2004.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. SIG-
PLAN Not., 37(1):58-70, 2002.

L. D. Moura and N. Bjorner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture
Notes in Computer Science, pages 337-340. Springer.

J. T. Miihlberg and G. Liittgen. Blasting linux code. In L. Brim, B. R. Haverkort,
M. Leucker, and J. van de Pol, editors, FMICS/PDMC, volume 4346 of Lecture
Notes in Computer Science, pages 211-226. Springer, 2006.

N. Tillmann and J. de Halleux. Pexwhite box test generation for .net. In 2nd
International Conference on Tests and Proofs, pages 134-153, April 2008.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs.
Automated Software Engineering, 10(2):203-232, 2003.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with java
pathfinder. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA '04), pages 97-107, New York, USA, 2004. ACM.

T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for gener-
ating object-oriented unit tests using symbolic execution. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 3440 of Lecture
Notes in Computer Science, pages 365—-381. Springer.

